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Microscopic Theory of Josephson Mesoscopic Constrictions
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We present a microscopic theory for the dc Josephson e8'ect in model mesoscopic constrictions.
Our method is based on a nonequilibrium Green function formalism which allows for a self-consistent
determination of the order parameter profile along the constriction. The various regimes defined
by the different length scales (Fermi wavelength AF, coherence 1ength Q, and constriction length
Lc) can be analyzed, including the case where all these lengths are comparable. For A~&(Lc, (o)
phase oscillations with spatial period AF/2 can be observed. For L~ ) (0 so1utions with a phase-slip
center inside the constriction can be found, in agreement with previous phenomenological theories.

PACS numbers: 74.50.+r, 73.20.Dx, 85.25.Cp

The problem of dc Josephson transport through a su-

perconducting constriction received considerable atten-
tion several years ago in the context of what was known
as the theory of superconducting weak links [1]. In the
last few years, there has been a renewed interest in the
subject fostered by the advances in nanoscale technolo-
gies which would allow the fabrication of superconduct-
ing mesoscopic devices. Actually, some steps in this di-
rection have already been taken with the development
of a Josephson field effect transistor (JOFET) [2]. An-

other experimental situtation where this problem can be
studied is that of a superconducting scanning tunneling
microscope [3].

The relevant feature of such a mesoscopic device would
be the phase coherence of both single electrons and
Cooper pairs over a length comparable to the system
size. This opens the possibility of observing novel inter-
ference phenomena when A~ & ((0,(~,I~) ((~ denotes
the normal electron coherence length). The case in which

L~ &( (s has been analyzed in a recent publication by
Beenakker and van Houten [4]. In this regime the de-

tailed form of the order parameter profile inside the con-
striction is irrelevant for the evaluation of the Josephson
current. In the opposite limit (L~ )) (0) the supercon-
ducting phase would drop linearly along the constriction.
A model for a superconducting point contact within this
limit has been proposed by Furusaki et aL [5].

In the intermediate regime, in which all the rele-
vant lengths can be comparable, one would need a self-

consistent determination of the complex order parameter
along the constriction. This poses a difficult task that has
only been addressed within phenomenological Ginzburg-
Landau theory [6] or with semiclassical treatments based
on Boltzmsnn-type transport equations [7]. The aim of
this work is to present a microscopic model for the self-
consistent description of a Josephson constriction in all
the relevant regimes.

We consider a model constriction like the one depicted
in Fig. 1, vrhich consists of a quasi-one-dimensional
region of length L~ coupled to wider regions (L and
R) which act as electron reservoirs. For simplicity, we

assume a single quantum channel open for transport
through the constriction (a generalization for the multi-
channel case is possible within the formalism outlined
below). The reservoirs are homogeneous superconductors
with a constant complex order parameter except near the
interface region. Within our model, the constriction may
be either superconducting or normal, although we will

focus here on the superconducting case.
We use a local orbital representation for the description

of the electronic states of the system. This representa-
tion is very well suited for the self-consistent determine
tion of the order parameter profiles, provided that the
pairing potential is assumed to be diagonal in this ba-
sis. This simplification does not afFect in a relevant way
the description of the superconducting state, which is

controlled basically by a single parameter (the coherence
length (0 = hvar/xb, ). In the lower part of Fig. I we rep-
resent, schematically, our discretimed model constriction
where the quasi-one-dimensional region is represented by
a linear chain with N~ sites. For convenience, in the

~ 1 ~ ~ ~ ~ ~1

FIG. 1. Schematic representation of the model constriction
considered in this paper.
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numerical self-consistent calculations, the left and right
reservoirs are represented by two Bethe lattices with co-
ordination number z+ 1. The mean-field Hamiltonian
for this model has the form

H = ) (sg —p)c cgtp+ ) tgjcg cjtp
%ACT ~73 ~

+) (b.;ctict) + b„c,yc,g)t

where the chemical potential p is a constant throughout
the whole system due to the absence of an applied voltage
and will be taken as zero. The hopping parameters t,~

are only difFerent from zero for nearest neighbors and the
complex order parameters are given by

b„=—U;(c,.)c,.)), (2)

where U~ is the attractive e-e interaction at site i.
The system defined by Eq. (2) provides the set of self-
consistent conditions for obtaining the order parameter
profile. We choose U; and t;z to be constant (UL, U~, UR
and tL, tc, tR) inside each diferent region (left reservoir,
constriction, right reservoir) in such a way as to fix the
desired bulk values of 6 (EOL, Lg, hsR) in the three sepa-
rate regions. The hopping parameters, t;~, can be chosen
to be real and we take tL = tR = t as the unit of energy.
We denote by tL~ and t~R the parameters coupling the
left and right electrodes to the constriction.

In the absence of an applied bias voltage, the Joseph-
son current through the constriction between sites i and
i + 1 is given by

One can show that I; is independent of the chosen site,
i.e., the continuity equation is b»filled, only when the
solution for the diferent 6; is fully self-consistent [8,9].

The averaged quantities appearing in Eqs. (2) and

(3) are most conveniently expressed in terms of non-
equilibrium Green functions C+ [10],which in a Nambu

(2 x 2) representation [ll] are defined by

All the different correlation functions appearing in Eqs.
(5) and (6) can be obtained using conventional Green
function techniques [12].

In the limit of L~ ~ 0 it is possible to obtain analyti-
cal results for the Josephson current using this model. In
this case, the self-consistent phase pro61e is well approxi-
mated by a step function between the L and R electrodes.
Defining ()() = pL —pR as the total phase diference, Eq.
(6) can be written as

I = tLR—sin(p) d(dim ' „' f((d),
~L,21(~)9R,12(~)

—OO
D" u

(7)

where tLR is the coupling between the outermost sites
on the left and right reservoirs, f((d) is the Fermi dis-
tribution function; gL and gR are the retarded Green
functions for the uncoupled electrodes (the tilde indicates
that the phase factor has been removed, i.e. , gLT 21

~L,21 gR, 12 gR, 12)

D (~) det[I tLR+sgL(~)+sgR(~)l

72 being the usual Pauli matrix.
It is interesting to analyze the transition from the tun-

nel to the contact regime as given by Eq. (7) (for sim-
plicity we assume b, oL ——b.sR ——b, and 6 « 1 ). In the
tunnel regime, tLR « 1, D" 1, and one recovers the
usual Josephson expression for a tunnel junction [13]

mb, (T) . b.(T)I(P) = singtanh
2eR~ B

where R~ is the normal resistance of the junction which
is given by RN ——(2e /h)cr, cr being the normal trans-
mission through the constriction which in our model
adopts the simple form a = (4tLR/zt )/(1+ tLR/zt )
[14]. On the other hand, when approaching the contact
limit, n -+ 1, the main contribution to the current comes
from states inside the superconducting gap, which are
given by the zeros of Eq. (8). These states are orig-
inated by multiple reflection processes at the interface
region and give the following simple expression for the
current

, &(' (t') i(t)) ( ~(t') ~(t)),
( (c,~(t')c,'~(t)) (c'i(t')c,'i(t)) )

I(P) = sin(P) tanh
I&(T)I' . I~(4) I

2eR~ 2 BT (10)

Then, the self-consistent Eq. (2) and the stationary cur-
rent, Eq. (3), are given, in terms of the Fourier transform
G+,. ((d), by

cia Gr - Qp

28 ~ ([~,++1,(~)]11—[C,+. ,+1(~)]11}. (6)

s(p) = +(th(T)(b(1 —nein (p/2) being the position of

the states inside the gap . For the special case n = I,
Eq. (10) yields I(P) sin((|)/2), which coincides with the
result given in Refs. [4,15]. It is remarkable that, when
o. ~ 0, Eq. (10) tends eicactly to Eq. (9), whose deduc-
tion involved no localized states. One can understand the
equivalence between both ways of obtaining the tunnel
limit by realizing that the localized states move towards
the gap edges when a —+ 0, gradually becoming the band
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edge singularities of the uncoupled system. These singu-
larities gave the main contribution to the current when
obtaining Eq. (9).

Let us turn our attention to the eEects of self-
consistency as one moves from the above regime to the
opposite case, L~/(p && 1. We have performed calcula-
tions for a wide range of constriction lengths and different
values of the normal transmission parameter, o.. The co-
ordination number z on both electrodes has been taken
equal to 3, which ensures a rapid convergence to the bulk
values of the order parameter. The self-consistent order
parameter profile is calculated in the following way: We
first assume a given initial profile along the constriction.
Then, we calculate the system Green functions for this
profile which in turn yield the new order parameter pro-
file using Eq. (5). This process is repeated until conver-
gence is achieved.

In order to clarify the L~/(p dependence of our results

we have fixed 6& ——ZP& ——ZP& = 0.05 and AF = 4a (a
being the intersite distance) throughout the whole calcu-
lation. For the same reason we restrict ourselves to the
zero temperature case in the present calculations. In Fig.
2 we show I versus P curves chosen to represent typical
behaviors found in the different physical regimes. Thus,
Fig. 2(a) corresponds to the case of maximum trans-
mission (a = 1), whereas Figs. 2(b) and 2(c) illustrate
cases with decreasing o.. In these figures we plot curves
for different values of L~/(p, ranging from Lc/(p = 0 to
Lc/(p » 1. We only represent the part of the curves
with I(P) & 0.

Several features are noticeable in these curves. First,
when increasing L~/(p, a critical value L~/(p 1 is
reached above which the function I(P) becomes multival-
ued [1,6,9]. This situation corresponds to the appearance
of a second kind, or "solitonic, " solution with a phase slip
center inside the constriction, in addition to the normal
one consisting basically of a linear phase profile between
the reservoirs. In Fig. 3 the two kinds of self-consistent
profiles for L~ ) (p are displayed. They correspond to

m where the phase drop inside the constriction is spe-
cially sharp. It is worth noticing the appearance of oscil-
lations of period AF/2 in both profiles (phase and modu-
lus). This interference effect is a consequence of the phase
coherence of the normal electrons along the constriction,
analogous to the oscillations found in the electrochemi-
cal potential in normal mesoscopic wires [16,17]. On the
other hand, the other relevant length scale, (p, manifests
itself in a clear way in the solitonic phase profile: one can
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FIG. 2. Josephson current versus total phase difference for
three different values of the transmission parameter a: (a)
a = 1, (b) a = 3/4, and (c) a 1/12. In cases (a) and
(b) the hopping parameter between the constriction and the
reservoirs (tl.c and t&R) is equal to the intrachain hopping
t~ [tc = v z for case (a) and tc = 1 for esse (b)], whereas
in case (c) we take tc = 1 and tl, ~ = tcR = 0.5. The num-
bers above each curve indicate the number of sites within the
constriction.
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FIG. 3. Self-consistent order parameter phase and modulus

profiles for the case Nc = 64 and It = 3.4 of Fig. 2(b). Solid
and dotted lines correspond to the solution in the upper and
lower branches of the I(P) curve, respectively.
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verify that the width of the phase-slip center is almost
equal to (o. The overall features of these solitonic solu-
tions are in agreement with predictions made in previous
phenomenological analysis [1,18].

It is interesting to observe the behavior of the max-
imum Josephson current, I „, as a function of L~ for
the different situations represented in Fig. 2. In the case
of maximum transmission [Fig. 2(a)] a slow decrease in
I ~ is observed for increasing I~, with a limiting value
corresponding to the critical current of the infinite one-
dimensional chain. This monotonic decrease of I,„ is
not found when the transmission is lowered below a cer-
tain value. For instance, for the case of Fig. 2(b), I
slightly increases with L~, tending to the same limiting
value as in Fig. 2(a).

Figure 2(c) corresponds to a somewhat difFerent phys-
ical situation, in which a weaker coupling between the
constriction and the reservoirs is considered. For suffi-
ciently large L~, this situation may be regarded as a case
not far from two identical tunnel junctions connected in
series, which would have a I(P) ~ sin(P/2) characteris-
tic, whereas for Lg ( (o the system behaves like a single
junction with the usual I(P) sing form. The transi-
tion between these two regimes can be clearly observed
in Fig. 2(c). Note that with increasing L~, I(P) be-
comes eventually multivalued, as in the previous cases.
However, for large enough Lc [see case Ng = 80 in Fig.
2(c)], the solitonic branch does not merge in a continuous
way into the "normal" one. Instead, both branches ex-
tend up to P = 2n keeping a difFerent character. In the
lower branch, the region where the modulus of the or-
der parameter nearly goes to zero tends to fill the whole
constriction when P ~ 27r.

In conclusion, we have presented a fully self-consistent
description of the dc Josephson transport on a meso-
scopic weak link. As a first check, the method has been
applied to the case of a short constriction, recovering pre-
viously known results. On the other hand, we have ana-
lyzed the case where the constriction length is compara-
ble or larger than the superconducting coherence length.
To our knowledge, this is the first calculation of the self-
consistent order parameter profiles and the current-phase
relationship based on a microscopic model. The local
character of our procedure makes it specially powerful
for treating systems with a more complicated geometry
in situations where the self-consistent variation of the
order parameter plays a crucial role. For instance, us-
ing the present approach one would be able to address
the problem of the proximity induced Josephson effect in
a metal-superconductor nanojunction [19]. Work along
this line as well as on the inclusion of a finite voltage for
the study of the ac Josephson effect is under progress.
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