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Mesoscopic Dynamical Echo in Quantum Dots
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The time evolution of a wave packet within a disordered quantum dot is investigated. It is shown
that although the disorder-averaged electron density is nearly homogeneous at times of the order
of the difFusive time across the dot, at larger times there is a remarkable evolution towards a state
with increasing correlation with the original state (i.e., an echo appears). At long times compared
to the inverse mean level spacing the density distribution becomes time independent and preserves
a memory of the original state. These efFects are shown to reveal themselves in the relaxation of
current through a quantum dot weakly coupled to reservoirs.
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In this Letter we discuss the dynamics of a quantum
particle (electron) inside a quantum dot. Namely, we
consider the time evolution of the probability to find the
particle at a point rz if it was located at a point ri at
time t = 0. We assume that the host potential of the dot
contains a random component large enough for the mean
free path of the particle within the dot, l, to be much
smaller than the size of the dot, L. On the other hand,
let l be much larger than the wavelength of the particle
A so that the dot is "metallic"; i.e., the relevant quantum
states of the particles are extended within the dot.

In this case A « l « L we can distinguish between
four difFerent time regimes for the evolution of the wave

packet.
(i) At the shortest times t & r = l/v (v is the velocity

of the particle) the evolution is ballistic and the size of
the wave packet R increases linearly with time.

(ii) When time t & r (or R & l) the particle dynamics
becomes difFusive. The crossover from the ballistic to the
difFusive regimes is well known in the theory of disordered
metals. It was discussed, probably for the first time, in
connection with the kinetic theory of gazes by Boltzmann
who invented the "stosszahl ansatz" [1]. In the difFusive

regime the size of the packet increases as Qt and the
probability to find the particle at the original point is

proportional to t dlz where d is the dot dimensionality.
Since the size of the quantum dot is finite this behav-
ior lasts only until the size of the wave packet becomes
comparable with L. This happens when t L /D = tl. ,

where D = vlld is the difFusion constant.
(iii) Classical dynamics appears at t & t1, and is not

very interesting: The particle has already spread over
all the system and the difFerence in the probabilities to
find it at the original point and at any other point de-

creases exponentially with increasing t. In the quantum
case the dynamics at the large times (t & tL, ) is much

less trivial and has not been previously discussed. This
is the subject of our paper. We will see that the quan-

turn interference and the discreteness of the exact energy
levels of the particle in the dot lead to a nontrivial time
dependence for t » t1, . The inhomogeneous part of the
electron density distribution will increase linearly with
time for t & tH = h/6 where b is the mean spacing
between the energy levels.

(iv) The average electron density becomes time inde-
pendent only for t » t11 . On the other hand this long-
time limit distribution turns out to be essentially inho-

mogeneous in space and contains a memory about the
original state. This memory can be eliminated only by
inelastic scattering.

We now present the theory for the long-time behavior
of a quantum particle inside a quantum dot W. e will

see that although all the calculations are made in the
disordered case l « L the results can be extended to the
generic case of chaotic quantum motion within a finite
volume. This theory enables us to describe also the ac
conductivity and current relaxation through a dot very
weakly coupled to external leads (see, e.g. , Ref. [2]).

We start with the Hamiltonian (5 = 1)

1 2
H= p —— +Uor +Up r

Uo(r) is the regular part of a confining potential while

Ui (r) represents a random potential. The problem can be
solved for an arbitrary symmetry of the Hamiltonian. We
will first describe the calculation in the unitary (broken T
invariance) case and then present results for orthogonal
and symplectic cases. To break T invariance we need a
magnetic field which is represented in Eq. (1) by the
vector potential A. We will assume that the field is weak

enough and neglect the Lorentz force [3].
The motion of the particle with energy eF from the

original point ri to a point rz can be described by the
conditional probability density to find the particle at a
point rz in a time t after it started at a point ri at t = 0.
This function can be expressed in terms of the exact re-
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I3(u, v) =i u —v, I3(u, v) = —in . (4)

Equations (3) and (4) lead to the well-known asymptotic
results for the waiting functions

(vFt)' ", (5)

p(t » r) = (4n Dt) (6)

Equation (5) describes the returning to the original point
after a single scattering event, while Eq. (6) is a result
of many scatterings by randomly distributed centers.

Equation (6) is valid only if the diffusion length R(t) =
/2dDt does not exceed the size of the quantum dot L,
i.e., when t & tl, 1/E„where E, = 2dD/Lz is the
Thouless energy. In the opposite limit t & 1/E„ the time
evolution is determined by boundary scattering. For-
mally this shows up in the discreteness of the spectrum
of the difFusion equation with mean energy separation
E,. Since this spectrum starts from zero [7,8], P(t, r) at
t & 1/E, can be written as

p(t«7) =

P(t r) = (1/V) [1+O(exp(—tE,))l (7)

where V L" is the volume of the dot. Equation (7)
means that the deviation of the density distribution from
the homogeneous one is exponentially small. Equation
(7) can be rewritten in the u representation in the form

P(~r) = — . . 1+0~
1 1 (cu)
V —i(~+ iO) (E,) (8)

tarded (advanced) Green function G~~~l of the Hamilto-

nian (1) (see, e.g. , Refs. [4,5]):

1
P(t, r) = exp( —uut)

2nN eF 2n

(
x GR CF + —;F1 2 +4 fF ——,r2 r12' ' j ( 2'

(2)

where ( ) stands for the averaging over U~(r), N(e~) is
the density of states at energy sJP, and r = rq —r3. The
waiting function p(t) —= P(t, r = 0) is of special interest:
p(t) is the probability density for the particle to return
at time t to the initial point rq.

P(t, r) describes the ballistic spreading for t & r, the
difFusive motion for t & r, and the transition between
them. Following the usual procedure [6] we get from Eq.
(2)

P(t, r) = exp( —ddt)
dw . dq
2n (2n)~

exp( —iq r)

x Iz '(~ + i/r, vp[q[) —1/r

where d = 2, 3 is the dimensionality of the sample (d = 1
has already been considered in Ref. [5] in detail), and

of the overall relaxation process. A nontrivial behavior
of the function P(t, r) for t & E, appears thanks to
the quantum (so-called weak localization, see, e.g. , Refs.

[3,9]) corrections to the diRusion: Quantum interference
leads to corrections to Eq. (8) in addition to the ex-

pansion in ~/E, . These corrections can be expressed in
terms of an expansion in 1/a, where a is the new quan-
tum parameter of the present problem

a = —in((u+ aO)/4, b = [N(sy)V] (9)

k~(r) = (G(r))'(G(0)) '
where G(r) is the Green function of the equation

(e~ —H)G(r) = b(r) .

(12)

(13)

Equations (12) and (13) mean that kg(r) is of a ballistic
nature. For d = 3 for a Bat background potential with
weak disorder we find

Here b, is the mean spacing between exact energy levels

of the particle in the quantum dot. The dimensionless
ratio E,/b, is known to be equal to the conductance g of
the sample, g = E,/b. = DN(~~)V/L3. As we have al-

ready mentioned we are considering the case of the weak
disorder so that g » 1.

Equation (8) is valid provided 1 « n « g, i.e., in the
frequency interval b, « u « E,. We will see later that
P(t, r) at t & 1/b, difFers substantially from Eq. (7). At
the same time it turns out to be impossible to evaluate its
Fourier transform P(v, r) within a perturbation theory
in 1/o, , for there is an essential singularity at 1/n = 0.
Fortunately it is possible to determine P(u, r) exactly in

the whole region o; « g, including o; « 1 and a » 1.
The method which enables us to comprehensively

study disorder in a closed sample in the frequence re-

gion u « E, is the supersymmetry 0 model invented in

Ref. [7]. In terms of this method the correlation function
P(a, r) can be written in the form

P(u, r) = (1/2)nN(sy) [a(u) + kg(r)b(u)] . (10)

Here

a(ur) = (q33 q33)q, b(~) = (q33 q33)q, (11)

where ( )q means a functional averaging over the su-
permatrix fields Q with the weight exp( —F), where F is
the free energy functional of the cr model. In Eq. (10)
we use the same notations for the supermatrix elements
as in Ref. [7]. At ~ && E, the standard n model can be
reduced to its zero-dimensional version where functional
integrals over q become definite ones. This enables us to
derive Eq. (10) for arbitrary large times.

The coordinate dependence in Eq. (10) is determined
by kp(r) which equals

We are now going to demonstrate that Eq. (7) de-
scribes only an intermediate rather than the final stage

sin (ky[r[) ( [r[l
(kFlrl)' ( T) (14)
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Similarly for d = 2 the function k2(r) is given by the
equation

gk2(r) = —
2 Jo

I
k~lrl + —y I

1 dy ( ]r] 'l

y2+1 ( 2l

where Jo(y) is the Bessel function. When k~~r~ )) 1 we
have then

k&(r) = 4 s(
~kF]r( I, 4) g l )

1 2TfQ«& (t&m —mt3( (t4
Ec

IQ(t 3,

Ig(t=O, r)l

and ks(r) = 1 in the region k~]r] && l.
In the limit u « E, the energy functional of the o

model F takes the form
FIG. 1. Schematic view of a time evolution of electron &rave

packet in a mesoscopic unitary sample: I@(t,r) I
is the elec-

tron density averaged over atomic scale.
F = —(cc/4) Str(AQ), (16)

where A~' = —Ass = 1, and Qs = 1 with Str being the
supertrace. Averaging in Eq. (11)with E from Eq. (16)
can be carried out by using the parametrization of Ref.
[7] and we obtain for the unitary ensemble

tion of the wave functions.
The result for C(z) in (18) for the orthogonal ensemble

1S

a(td) = 2/cc, b(u) = 1+ (1 —e )/cr (17)
C „(z)= 1 +z[2 —ln(1+2z)]8(1 —z)

Equation (17) is valid for arbitrary cs « g.
One can see that the expazeion of b(v) in 1/n contains

only terms of order 1/as. On the other hand, b(ur) also
contains a nonanalytical part cc (1/as) exp (—2a).

Equation (10) enables us to write P(t, r) in the form

P(t, r) = [1+kg(r)C(z)] / V,

where z = tb, /2n and in the unitary case C(z) is

C„„;q(z)= z8(l —z) + 8(z —1) .

(18)

p (r) = lim P(t, r) = [1+kg(r)) / V .

Therefore the memory about the initial position is pre-
served forever (provided there is no phase breaking). In
Fig. 1 the electron density distribution averaged over the
atomic scale is schematically shown for different stages of
the time evolution.

It is noteworthy that p (r) can be expressed through
the exact wave functions of the particle @„(r)in the dot

p~(r) =) (ltb~(ri)l' 10~(rs)l'8(e~ —~ )), (»)

and thus the function p (r) describes the space correla-

Here 8(z) is the step function. The present universal time
dependence (19) is directly related to the property of the
electron spectrum, its rigidity, in the mesoscopic sample
and, therefore, the echo described by Eq. (18) difFers

from the ringing efFect considered in Ref. [10].
According to Eqs. (18) and (19), for times longer than

2e/6, the following stationary distribution is established:

1+2z+ 2 —zln 8(z —1) .
2z —1

(22)

The first term in Eq. (22) is due to the constructive
interference of backscattering: This "Cooperon" contri-
bution already exists starting at time r; see, e.g. , Ref.
[11]. Therefore, in the present case the inhomogeneous
distribution remains over times t 1/E, and its am-
plitude additionally increasea for times t 2s/4. As
a result the inhomogeneous component of the long-time
limit distribution p~(r) is twice as large as in the unitary
Case.

For the symplectic ensemble C(z) in Eq. (18) is

C,„~(z)= —1+z[2 —ln [1 —2z[]8(l —z)

+ 28(z —1) . (23)

According to Eqs. (18) and (23), at times t n/b, an
appreciable part of the electron density turns out to be
again concentrated around the original point. Equation

(23) fails only in the exponentially short interval )z—
1/2~ && exp[—(L/l)(L k~)" ~]. This strong interference is
due to the Kramers degeneracy of the spectrum [12]. In
fact, in all three cases C(z) is the Fourier transform of
the two-level correlation function (see, e.g. , Ref. [7]).

A physical dynam~eel quantity that can be measured

experimentally is a transient current through the dot
[10,13]. The point contacts between the dot and the ex-
ternal leads can be well described by the transmission
coefficients Tq,s. For far separated contacts one can find,

in the linear approximation in the abruptly applied driv-

ing voltage and using the supersymmetry formalism [13),
that the current as a function of time is
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FIG. 2. Transient current through a quantum dot as a func-
tion of time for different transmission coeRcients Tq, 2 between
the dot and external leach.
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(Tg —Tz)z TQ Tl 1+zTz

+ (Tg + Tz —2TgTz) [z —(z —1)8(z —1)]
-(1-T)~.()-(I-T.) 4 ()

T~(l —Tz) + Tzz(1 —Tg) ( 1

)
—

I
—+ *—& its(*) ) , (&4)

where z = t6/2n, j = (2e /h) Vjz, with Vzz the applied
voltage, and

In Fig. 2 we show examples of the time dependence of the
current for a few values of the transmissions coeRcients.
The echo effect becomes explicitly visible as a break point
at t = 2z/b, in j (t), which corresponds to a response
to the two short consecutive rectangular voltage pulses
of opposite polarizations.

In conclusion, we have studied the internal spatial
structure of the wave functions in the quantum dot,
where the electronic motion is governed by chaotic dy-
namics. We have found that the spatial correlations de-

cay in accordance with the laws of ballistic spreading.
The fina mesoscopic stage of time evolution of the elec-
tron within the dot follows a universal time dependence
determined by the inverse Fourier transform of the two-

level correlation function.
Experimentally the mesoscopic dynamics could be ob-

served through the time dependence of transient currents
through the dot, which is shown to be a universal two-

parameter function of time with the parameters being
the transmission coeScients of the contacts.
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Above, we restricted the consideration to the unitary case
and the time interval t )& I/E, .

As is seen from Eq. (24),j (t)jj is a universal func-
tion of time measured in units of the inverse energy spac-
ing b, and the transmission coeRcients. At first, for
1/g (( z (& 1, the current j(t)/j rises linearly with
time. This result can be easily understood: In the fre-
quency region Tq zh « v &( E, the system is inertial
and its conductance should be purely inductive. In ac-
cordance with (8) and Ref. [12l the conductance is ap-
proximately equal to

(2e l 2TgTz

( h ) z —i(ur+iO)
' (26)

At the times t & 2z/6 the linear incr'~ of the cur-
rent with time slows dawn because of just the above re-
turn processes and due to the leakage into the external
leads. Simultaneously the phase-breaking processes at
the contacts start to play a role. Finally for the times
t & 2z/Tq 2A the current reaches a steady state value
determined by the static conductance

y~,z(z) =I [I+»i,zl —»[I+ (z —IP~.slit(z —1) (25)
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