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Noise in an ac Biased Junction: Nonstationary Aharonow-Bohm Effect
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We study excess noise in a quantum conductor in the presence of constant voltage and alternating
external field. Because of a two-particle interference effect caused by Fermi correlations the noise is
sensitive to the phase of the time-dependent transmission amplitude. We compute spectral density
and show that at T = 0 the noise has singular dependence on the dc voltage V and the ac frequency
A with cusplike singularities at integer eV/hA. For a metallic loop with an alternating Aux the phase
sensitivity leads to an oscillating dependence of the strength of the cusps on the Aux amplitude.
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Quantum coherence in small conductors leads to many
interesting effects [1]:weak localization, Aharonov-Bohm

(AB) effect with the Hux quantum hc/2e, universal con-
ductance fluctuations, etc. Coherence of transport affects
the spectrum of noise, equilibrium, or nonequilibrium,
since it is expressed through eigenvalues of the scattering
matrix [2—4], and thus is related with the conductance

[5]. However, for a better understanding of transport in

small conductors it is interesting to analyze the converse
line of thinking and to look for coherence effects that are
present in the noise but are absent in the conductance.
Such effects, if they exist, are genuinely many particle

[6] and, as long as we are talking about noninteracting
fermions, it is only statistics that can produce such coher-
ence. The purpose of this Letter is to describe an efFect

caused by two-particle statistical correlations that leads
to phase sensitivity of the electric noise, a two-particle
observable, but does not afFect one-particle observables
such as conductance. The phase sensitivity manifests it-
self in an oscillating dependence on the amplitude of an
ac flux, in many aspects similar to the AB effect. How-

ever, it will occur in a single-connected conducting loop,
i.e., in the geometry where the normal AB effect is ab-
sent.

In simple words, when an electron is scattered in-

side a conductor its wave packet splits into two por-
tions, forward and backward, presenting a choice to the
electron to be either transmitted or reflected with the
probabilities D and 1 —D Part of this. picture of the
wave-packet splitting involving the relation of D with

the conductance [7,8] and of D(1 —D) with the noise

[2—4,9] is well understood. However, there is another

part, quite unusual, related with the behavior of cur-
rent Huctuations in the time domain. Recently, we stud-
ied the distribution of the charge transmitted in a resis-
tor over fixed time [10] and found it to be very close to
the binomial, which means that the attempts to trans-
mit an electron are highly correlated in time. (Were the
sequence of the attempts perfectly periodic the distri-
bution would be exactly binomial. ) The origin of the
correlation is the Pauli principle that forbids passing of

electrons through the resistor simultaneously. The at-
tempts follow almost periodically, spaced by the inter-
val h/eV. Because the periodicity is not perfect it does
not affect the average current, but shows up in its sec-
ond moment, i.e., noise, leading [11]at zero temperature
to a sharp edge of the spectral density of excess noise

S~ near ~, = eV/~: S~ = g—'. D(1 —D)~(~o —Ital) for

lid
l
( tdp, 0 otherwise, where g is spin degeneracy. [Excess

noise is the difFerence of the actual noise and the equi-

librium S = g —'DfioJ coth(hu/2T). ] The corresponding
current-current correlation in time is ((j(t)j(t + r))) =
ge D(1 D)sin —(nor/2)/r vr, oscillating with the period
27'/wo and decaying.

Having realized that the frequency eV/5 is character-
istic for the time correlation of the attempts one is led
to think of an experimental situation where the presence
of this frequency is revealed. It is natural to consider a
system driven both dc and ac, and to look for the effects
of commensurability of 0 and eV/5, where 0 is the fre-

quency of the ac bias and V is the dc voltage. In this
Letter we study such a system and demonstrate that due

to the ac bias the singularity at u = uo can be shifted
down to zero frequency thus making it easier to observe.
Below, we compute the noise in a model resistor in the
presence of combined dc-ac bias and find that the low

frequency noise power So has singularities at eV = nba,
when the "internal" frequency eV/h is a multiple of the
external frequency A. We find that BSo/BV is a stepwise
function of V that rises in positive steps at V„=nhA/e.
Another interesting observation is that the heights of the
steps of BSo/BV are phase sensitive; i.e., they depend on

the phase of the transmission amplitude in an oscillat-

ing way resembling the AB efFect. The phase sensitivity
of the noise should be opposed to the pure dc situation
where only the probabilities of transmission and reflec-

tion enter the expression for the noise, which makes the
noise power insensitive to the phase picked by the wave

function across the system. In the simplest situation
when the ac bias is supplied by alternating Hux thread-

ing the current loop, 4(t) = Ca sin(Ot), the heights of the
steps in BSo/BV are proportional to the squares of the

538 0031-9007/94/72 (4)/5 3 8 (4)$06.00
1994 The American Physical Society



VOLUME 72, NUMBER 4 PHYSICAL REVI EW LETTERS 24 JANUARY 1994

Bessel functions 22(2z C /Oo), where Oo = hc/e. Let us
note that we are not talking about the trivial efFect of
the electromotivel force 8—4/c8t induced in the circuit
by the alternating fiux: The efFect in the noise will per-
sist in the quasistatic limit ]84/c8t] « V when the ac
component of the current vanishes.

Let us start with recalling general facts about scat-
tering ofF an oscillating potential. We consider a model
one dimensional system where electrons are moving in
alternating scalar and vector potentials, U(x, t) and
A(x, t), that are localized in the interval [

—d, d], U(x, t) =
A(x, t) = 0 for ]x] & d. As a function of time they are
periodic: U(x, t) = P U~(x) exp( —imOt), where
Ue(x) is the static part of the potential, and the other
harmonics U (x), m g 0 describe the ac bias. [The ex-
pression for A(x, t) is similar. ] The dc bias is expressed
in the framework of the Landauer model as the difFer-
ence of the population of the right and the left scattering
states. An important difFerence is that in our case the
states describe inelastic scattering because an electron
can gain several quanta hA while passing through the
region [—d, d].

Instead of carrying out the analysis for a general form
of the scattering we consider the case when the time tf of
traversing the barrier U(x, t) is much shorter than 2vr/0
and 5/eV. The point is that 5/tf defines the character-
istic scale of energy dependence of the scattering ampli-
tudes, so the condition tyA « 1, tfeV « h enables one
to neglect the energy dependence of the scattering ma-
trix in the interesting energy domain Ez 6 max[eV, 50].
We also assume EF )) max[eV, hQ], which allows one to
neglect the difference of the velocities of scattered and
incident states, and set them equal to v~. It should be
remarked that the physical picture we discuss below is
not greatly dependent on any of these assumptions; they
only make our expressions more compact. The more gen-
eral case of arbitrary relation between 5/tf, Es, eV, and
hA presents no difficulty.

Besides being relevant for applications, the assumption
of short tf, i.e., of instantaneous scattering, allows one
to simplify the treatment of the scattering and to write

scattering states through time-dependent scattering am-
plitudes. For the states near the Fermi level we have

e'"*+BI.(t„)e '"*, x & —d,

A~(t„)e '"*, x & —d,
CR, ic(x ) x e-'k*+ B (t )e'k* x ) d

Here the retarded time t„= t —[x~/v~ accounts for
the finite speed of motion after scattering. The am-
plitudes AL, f~l(t), BL,&R1(t) describe scattering ofF of a
slowly varying potential at a given instant of time.

The operator of current, j (x, t) = —ieger(x, t)V@(x,t),
is written in terms of second-quantized electrons,
g(x, t) = g&(x, t)+g&(x, t), g&(x, t) = P„gL„&(x,t)a&,
Q~(x, t) = Q& QR, ic(x, t)bg, where ay and bg are canoni-
cal Fermi operators corresponding to the states (1) com-
ing out of the reservoirs, the left and the right, respec-
tively. It is straightforward to compute the mean value
I(t) = (j(x, t)), where the brackets ( ) stand for av-
eraging with the density matrix p of the reservoirs. As
usual, we assume absence of correlations in the reser-
voirs, p = pL, pR, which physically means that af-
ter having been scattered into a reservoir electrons have
enough time to relax to the equilibrium before they re-
turn. Below we assume equilibrium Fermi distributions
pr„R = n(E —E~ 6 eV/2). One obtains

(2)

where D(t) = [AL,(t)[ = [AR(t)] and g is spin degener-
acy. Equation (2) means that the current "adiabatically"
follows time variation of the transparency of the barrier
according to the Landauer formula.

Now, we shall consider spectral density of the noise
S = ((j j )) and find that, unlike I(t), it is not re-
duced to anything trivially related with the static limit.
Let us average two currents over the distribution in the
reservoirs. Evaluation of the average is similar to Refs.
[2—4]. The result reads

2

((j(ti)i(tz))) =, ) .e ' '"' "'(IAi(ti)Ai(t2)
E,E'

+B~(ti)AL, (t i )AL, (t2)B~(t2)n~ (E')[1—

[ (nL, (E') [1 —nI, (E)]+ nR(E') [1 —nR(E)])

ng(E)] + AL, (ti)B~(ti)B~(t2)AL, (tz)nL, (E')[1 —n~(E)]).
To compute S we have to take the Fourier transform and substitute the Fermi distributions nl, f~1(E):

2 ) 2Ns(~ —n&)[([AL, [') ['+Ni(~, »+ «)[(Ar, BR) [', (3)
n

where No(x) = xcoth(x/2T), Ni(x, y) = No(x + y) + No(x —y), and ( . )„denotes Fourier components, e.g. ,
(AL,BR)„= 2 f Al. (t)B~(t)e'"n dt. Equation (3) describes the noise as a function of eV, 0, u, and T. The
behavior is simplest at T = 0 when No(x) = [x], Ni(x, y) = ~x+ y[ + ~x —y]. Given by Eq. (3) as a weighted sum
of terms like [» + eV + u[, ]u —nA[ the noise S will then depend on V, 0, u in a piecewise linear way, changing
from one slope to another when nO+ eV + u or u1 —nO equals 0. This condition defines the locations where 8 has
singularities. They are cusps, sharp at T = 0 and rounded on the scale T at T & 0.
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With the general Eq. (3) one can explore the noise for
all possible relations between eV, 0, ur, and T. Partic-
ularly interesting for us will be the case T = 0, ~ = 0
corresponding to the noise So ——((j j )) o measured
at lour frequency. Let us remark here that setting ~ = 0
means only that ~ is small compared to the parameters
eV and 0 that define the width of the frequency band of
the excess noise. Such id may still be much higher than
the band width for other sources of noise, e.g. , the 1/f
Let us concentrate on the dependence of So on V. It is a
piecewise linear function which is easiest to characterize
by its derivative,

BSo/BV = ) A„8(eV —nhA), (4)

where A„= ](AL,B~)„~ and 8(x) = 1 for x ) 0, 8(x)
= —1 otherwise. The function BSo/BV rises in positive
steps at all V„= hAn/e (see Fig. 1), which implies con-
vexity of Ss(V) as function of V.

The meaning of the singularities in So(V) was clari-
fied recently in the study of the statistics of transmit-
ted charge [12]. The charge distribution was expressed
through the single-particle scattering matrix, and it was
found that it arises from Bernoulli statistics (i.e. , it is
a generalized binomial distribution), The frequencies of
attempts were given as a function of V and A. The prob-
abilities of outcomes of a single attempt were found in

terms of many-particle scattering amplitudes, and it was

shown that they change at the thresholds V„=nhA/e in

a discontinuous way due to statistical correlation in the
outgoing channels of the scattering. The discontinuity
manifests itself in the second moment of the distribution
that is simply the noise So(V).

At this point let us consider an interesting example: a
junction with ideal leads bent into a loop of length I {see
inset of Fig. 1) threaded by an oscillating magnetic flux

C (t) = C, sin(Qt) that supplies the ac bias. In this prob-
lem the junction is the only source of scattering. For
simplicity let us assume that only one scattering chan-

nel is involved. Also, let us suppose that the magnetic
Geld is quasistatic; i.e., the time of flight through the sys-

tern ty = L/UF is much shorter than 2n/0, which makes

it possible to introduce the time-dependent amplitudes

AL, l~l(t), BL,libel(t) as discussed above. In such a situa-

tion the vector potential can be treated semiclassically,

thus leading to @(x,t) = exp[~ f* A(x')dx']go(x, t),
where @o(x,t) is found from the Schrodinger equation in

the absence of the magnetic field. Thus all the depen-

dence on the flux can be accumulated in the phase of the
transmission amplitude,

ARir, l (t) = exp[+i2n 4(C)/4o]A~lL, l

where 4o = hc/e is single electron flux quantum. Since

[AL, (t)[ =const the current is time independent:

g —'„DV. For the same reason the first term in Eq. (3)
vanishes at n g 0. Fourier components in the second
term are expressed through Bessel functions:
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{Ar.B~)„=J„(2rro /C o)Ar, Brr.

Then, according to Eq. (4) the heights A„of the steps in

BSo/BV are given by

A„= D(l —D)J„(27r@ /C's).

They oscillate as a function of 4~/4o and vanish at the
nodes of Bessel functions.

Equation (6) illustrates one important feature of the
noise in the ac biased system, the sensitivity to the phase
of the transmission amplitude AL, (t). By varying the am-
plitude O~ one can make A„vanish separately for each
harmonic nA of the ac frequency. This should be com-
pared with the dc case where the noise is phase inde-
pendent since it is expressed through ]AL, ]

. We call the
oscillating dependence (6) the nonstationary Aharonov
Bohm specs. To compare it with the usual dc AB efFect
let us recall that the latter is observed in the situation
where one has interference of transmission amplitudes
corresponding to difFerent classical trajectories, e.g. , in a
conductor with multiply connected leads forming one or
several closed loops. The dc AB efFect cannot be observed
in the single path geometry like Fig. l. Alternatively, the
nonstationary AB efFect appears as a result of interfer-
ence of the right and left scattering states traveling in
the opposite directions along the same path and having
energies shifted by nQ. It is clear from our discussion
that such interference does not contribute to the ac con-
ductance but is important for the noise and, therefore,
one obtains the nonstationary AB efFect in the noise even
in the topologically trivial situation of Fig. 1.

To understand the relation with the dc noise calcula-
tion [2—4) let us consider the sum rule:

2w/A) .& = — D(t) [I —D(t)]«
27t p

where D(t) = ~Ar, (5)] . Equation (7) follows from

.3
..2

eV/fiA
2 4 6 8 10

FIG. 1. Differential noise BSo/BV at T = 0 given by Eqs.
(4) and (6) is plotted against V for three flux amplitudes: (I)
4~ = 5C'o/4~; (2) C'a = 7co/2x; (3) @a ——23oo/4m. Inset:
Junction with leads bent in 8, loop through which alternating
magnetic Aux is applied.
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Plancherel's formula applied to the Fourier components
of AL, (t)BR(t). In the example with the ac flux the sum
rule is just the known identity Q„J„(x)= 1. When the
limiC is taken 0 -+ 0, V = const, the steps in BSO/BV do
not vanish but just move closer to zero, thus efFectively
condensing them all together in a single step at V = 0.
The height of this step is not phase sensitive and is sim-

ply given by Eq. (7) as the dc noise averaged over the
period 27r/O.

It is worth mentioning that our results for S are quite
general. Indeed, it is clear after what has been said that
the singularities at V = nhA/e are only due to the sharp
edge of the Fermi distribution of energies and are not
related with any speci6c geometry assumed for the junc-
tion. Because of Chat the effect should be displayed by
any coherent conductor, provided that the main source of
inelastic scattering is the ac potential. A more fundamen-
tal limitation to the general validity of our calculation is
in the assumption that the flux threads only the phase
coherent part of the conductor. It would certainly be
of interest to better understand the opposite limit when
the ac voltage gradually increases over a distance much
larger than the phase breaking length L~ = QD7y.

Let us briefly discuss a generalization of the system
shown in Fig. 1 where the loop is not an ideal lead but a
real metallic wire with disorder; i.e., instead of one scat-
terer there are now many of them uniformly distributed
over the bulk of the wire. Most interesting is the case of
a purely coherent conductor for which the energy relax-
ation time 7@ and the phase breaking time ry are much
longer than the flight time ty that one can estimate as
ty = L2/D, where D is the diffusion constant. In such
a system transport is described by channels of the scat-
tering matrix with transmission coefficients T assigned
to each channel [8]. In the dc case the noise can be writ-
ten [4] in terms of T~ as So = g—'Q T~(1 —T~)eV.
In the presence of the alternating flux the extension of
our formalism can be carried out easily and one gets
an expression similar to (7) with D(l —D) replaced by

T~(1 —T~). However, the limitations under which
the result is valid, eV « 5/t y, 0 « I/ty, are now slightly
more stringent because the flight time ty is longer.

To summarize, we studied current and noise in a con-
ductor driven by dc and ac and we expressed them
through time-dependent one-particle scattering ampli-
tudes. In the quasistatic limit of short time of flight
through the conductor the current is given by the Lan-
dauer formula with time-dependent transmission coeffi-
cient, i.e. , by a trivial generalization of the static case.
The situation with the noise is quite difFerent because of

the two-particle interference .The spectral density of the
noise S depends on the scattering amplitudes in such

a way that the phases do not drop out, and this leads
to a nonstationary Aharonov-Bohm efFect. Because of
the way the Fermi statistics affect the two-particle in-

terference the noise measured at T = 0 is singular at
u = keV/h+ mA, where m is any integer. To illustrate
the phase sensitivity of the noise we consider a conduct-

ing metallic loop in which the ac signal is supplied by an
oscillating magnetic Aux. Because of the sensitivity to
the phase of transmission amplitude the strengths of the
singularities in the noise display oscillatory dependence
on the amplitude of the ac flux given by squares of the
Bessel functions.
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