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Normal Modes for Electromagnetically induced Transparency
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We define paired variables which are the normal modes for electromagnetically induced transparency
and use these modes to study the propagation of matched pulses in an absorbing medium.

PACS numbers: 42.50.Rh, 32.80.Dz, 42.50.Hz, 42.65.Ky

Recent experiments have shown how an otherwise opti-
cally thick medium may be rendered transparent with

nearly all of the atoms remaining in the ground state [1].
This type of transparency is attained by applying a strong
laser or electromagnetic field, termed here as the coupling
field, on the l2)-l3) transition of a lambda system (Fig.
1), thereby creating transparency for probe radiation on
the l I)-l3) transition. This technique has been termed as
electromagnetically induced transparency (EIT).

EIT depends on the excitation of a superposition wave
function, often termed as a population trapped or dark
state. In the bare atomic basis (Fig. 1), this wave func-
tion has no component of state l3) and therefore, once
prepared, is immune to radiative decay, autoionization,
collisional dephasing, and all other processes which affect
only state l3). This state may also be replaced by a con-
tinuum, thereby, in the spirit of a Fano interference, also
allowing propagation through photoionizing media [2].

The essence of creating transparency for pulses propa-
gating through an optically thick medium is in the self-
consistent creation of the population trapped state. This
is not trivial: For example, if the coupling laser pulse is

long as compared to the probe pulse, the probe pulse will

have a much slower group velocity and, as it slips through
the coupling pulse, will at all times have a nonzero loss
[3]. Recently [4], based on the earlier work of Dalton
and Knight [5], we have suggested applying electromag-
netic fields which have identical envelopes (matched
pulses) on the coupling and probe transitions. In this

vier = l3

FICJ. 1. Energy level diagram. States l 1 &-l2& are stable; state
l3& decays to other states which are not shown. Electromagnet-
ic pulses pf(z, t) and cg(z, t) are applied on the l 1&-l3) and
l2&-l3) transitions.

work we develop equations and give numerical results for
the propagation of matched pulses through an optically
thick medium whose atoms are all initially in the ground
state. We find that, as matched pulses propagate through
an absorbing medium, there is a front-edge loss and dis-

tortion followed by completely lossless and dispersion-free
propagation for all time thereafter. These results bear on

the many new ideas for amplification without population
inversion, high dispersion and refractive index without

loss, nonlinear optical processes, and novel types of signal

processing [6].
We consider the population trapping and propagation

processes in terms of two normal modes. These modes
are defined by pairs of variables which are (a) the proba-
bility amplitude of the population trapped state and the
weighted sum of the time-varying Rabi frequencies of the

l I&-l3& and (2)-l3) transitions, and (b) the probability
amplitude of the nontrapped state and the difference of
the Rabi frequencies of these transitions. Either mode, if
excited independently, will propagate without loss or
dispersion and without excitation of the alternative mode.
We remark on the motivation for the definition of these
modes: The idea is to choose paired variables of atomic
states and applied fields such that both variables of the
alternative mode will be driven to zero, while both vari-

ables of the propagating mode become independent of
space and time. For the atom, the nonpopulation trapped
state is driven to zero and the population trapped state is

maintained. For the fields, the superposition field which

is the difference of the applied fields is driven to zero and
the sum-field state is maintained. This essential recipro-
city, where matched fields produce population trapped
atoms and population trapped atoms produce matched
fields, is the physical phenomenon which is the essence of
this work.

We consider one-dimensional propagation and assume

applied electromagnetic fields

E~ (z, t ) =Re [E&f(z, t ) expj (to~ t k~z + Op )], —

E,(z, t) =Re[E,g(z, t) expj (ta, t —k,z+8„)] .

The envelope functions f(z, t) and g(z, t) are complex
and may include detuning from state l3&. Their band-
widths are restricted in the sense that they must satisfy
the rotating wave approximation and interact only with
the l 1)-l3) and l2)-l3) transitions, respectively. Noting
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and the mean value of the per atom dipole moment is

(P) =p[3a3 ai expj (copt —kpz+8p)

+pz3a3 azex pj (to, t —k,z+ 8, ) +c.c.

(1a)

(lb)

We will assume the ideal case of population trapping
where states (I) and ~2) are stable, where state ~3) decays
at a mean rate I 3 to other states which are not shown,

p'ff* pcfg'
pef g ezgg

Fig. I, to& =m3-col and co, =m3 —co2. The quantities E~,
E„O~, and 8, ar'e real, positive, and time invariant. The
k vectors, kp and k„are arbitrary and may have opposite
sign. We assurrie real matrix elements p;J and define
time and space invariant Rabi frequency amplitudes as

Qp pi3Ep/h and Q, =p23E, /h.
We begin in an interactionlike picture, where the par-

tial differential equations for the time and space depen-
dent probability amplitudes are

and where Doppler and Stark shifts are neglected. By
formulating the problem in this way, and by neglecting
dephasing, the need for a density matrix treatment is

avoided.
We will also assume that a3=0 at t=O and that the

linewidth of state ~3), I 2, is sufficiently large that the
derivative, Ba3/Bt, in Eq. (lc) is small as compared to
I 3a3 and may be neglected. This allows the probability
amplitude a3 to be eliminated in favor of al and a2 and
creates an effective two-state problem with atom proper-
ties that are symmetrical with field properties. We note
that the assumption of large I 3 is not essential to the
properties of these normal modes and one may instead
formally integrate Eq. (lc) and proceed much as is done
here.

From Maxwell's equations we form slowly varying en-
velope equations to describe the propagation of f(z, t)
and g(z, t) Noti.ng that the quantities Qp/I 3 and Q, /I 2

are the golden rule transition probabilities for states )1)
and (2) to state (3), we define p =(Qp/I 3) '/, c
=(Q,/r3) '/, and express the electric fields Ep and E, in

terms of the quantities. We also introduce the absorption
cross sections op 2(po/soap)' (top~pi3~ /AI 3) and a,
=2(po/sos, )' (ai, [p23[ /AI 3) and let /V equal the num-

ber of atoms per volume. Schrodinger's and Maxwell's
equations then become

(2a)

1

Bz v, at

tl 1 8
az v, at
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(2b)

The quantities Vp, V„and, also, sp and s, (in o'p and ~,)
result from other transitions of the atom. When V~&V„
propagation will no longer be lossless. For this work we

assume that the pulses are sufficiently long that we may
take Vz V, =V.

Examining the right hand side (RHS) of Eqs. (2a) and

(2b), we see that the amplitude probabilities and field
amplitudes are intertangled and that there is no
simplification if the fields are matched lf(z, t) =g(z, t)]
or if the atoms are in a trapped state.

We change basis so that new probability amplitudes bi
and b2 are related to a l and a2 by

c -p
( 2+C2) i/2 P c a2

(3a)

c —p pf
(p2+C2) i/2 pc cg (3b)

We note that the transformations (3a) and (3b) are iden-
tical. With these new variables, Eq. (2) becomes

and define superposition electromagnetic field variables as
s(z, t) and h(z, t)

a+
Bz V Bt

hh* hs* b i

b2 2 h*s ss*

8 h N alblbi +a3bl b2 alblb2+a3b2b2

2,a2bl b2+a3blbl a2b2b2+a3blb2 S

(4a)

(4b)

The quantities e~, cxz, and a3 are weighted absorption cross sections and are cr~ ——(c o'z+p a, )/(c +p ),
rrz= (P op+c a, )f(e +P ), a—nd o3=—(ap —cx, )CP/(c +P ). (When crp =o„o~=oz=crp and o3=0.) Equations (4a)
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If the pulses are matched (h =0), they propagate freely
through the first slab. The process may then repeat in the
next incremental slab. Note also that, for h=0, the
derivative of the weighted sum of the fields s is zero, and
it is this sum, rather than either field alone, that propa-
gates without change.

Equations (4a) and (4b) may be combined to yield the
conservation condition

[lbil'+ lbzl'] = +-
az v at

= —lb*, h+ b,*sl'.

'lfl' +
Ncrz Ão,

(5)

Though atoms and photons trade between states l 1& and
l2& and between the ll)-l3& and l2&-l3& transitions, re-
spectively; in any incremental volume, the number of
atoms which are lost equals the number of photons which
are lost. Both are equal to the RHS of Eq. (5). When in

either of the modes, the RHS is zero and the system is
loss less.

Figure 2 shows the results of a numerical solution of
Eqs. (4a) and (4b) with equal absorption cross sections

and (4b) put the atoms and fields on an equal footing. If
matched fields (h 0) are applied to an atom, the non-

trapped state b2 decays to zero. Analogously, if the
atoms are in a population trapped state (hz=0), the
difference of the fields h decays (spatially) to zero.

%'e now establish the meaning of the paired variables
bi, s and bz, h as normal modes. 8'e observe that when in
either of the two normal modes, that isw, hen either
bq=h =0 or b~ =s 0„ then a11 the derivatives in Eqs.
(4) are equal to zero. Either pair of variables, once es
tablished, is lossless.

To establish the mode bi, s we apply matched pulses
(h 0) at z 0 for all t. To establish the mode bz, h we

apply antimatched pulses (s =0) at z =0for all t

Consider the application of matched pulses to an opti-
cally thin slab of atoms at z 0, all of which are in the
ground state. We take ai =1, az=a3 0, and use Eq.
(3a) to determine the probability amplitudes bi and bz at
t=0. From the first matrix of Eq. (4a) we see that the
derivative of the trapped probability amplitude bi is zero
and remains zero as long as h =0. The nontrapped prob-
ability amplitude bz is exponentially depleted in a time
which is inversely proportional to the sum of the instan-
taneous golden rule transition rates of the two transitions,
thereby preparing a pure trapped state.

Next, examine the spatial dependence of h(z, t) and
s(z, t) Once . bz has been driven to zero in an optically
thin slab, Eq. (4b) becomes

r r
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FIG. 2. Probe laser (p) and coupling laser (c) as seen by an
observer after propagating a distance which, in the absence of
the coupling laser, would have caused an attenuation of the
probe laser of exp( —5). Time is in inverse units of the probe
transition rate p . %e observe a front-edge preparation loss of
3.6% and lossless transmission thereafter.

o'~ =o, . Matched Gaussian pulses with an intensity ratio
of 100:1 (c =10, p 1) are applied at z=O and allowed
to propagate a distance over which, if c were zero, the
probe intensity would be attenuated by exp( —5). Time
and distance are measured in units of the inverse of the
golden rule transition rate (I/p ) and inverse attenuation
length (I/a~) of the probe, respectively. The probe laser
(p=l) experiences a front-edge preparation loss as it
produces the population trapped state and is lossless
thereafter. In this case, 3.6% of the probe pulse energy is
lost. If the pulse is made 2 times longer, then about 1.8%
of its energy is lost.

We remark on the relation of EIT with matched pulses
as compared to SIT with simultaneous pulses or simul-
tons [7], and as compared to other methods of tran-
sparency which are based on producing a population
trapped state. The pulses described here are not simul-
tons; the further they propagate, the greater their front-
edge preparation loss. Most other methods of producing
population trapped atoms, for example, counterintuitive
preparation [8] or the methods of Kocharovskaya and
co-workers [91, depend on adiabaticity and, for complete-
ly lossless propagation, require both the probe and cou-
pling laser intensities to vary slowly as compared to the
Rabi frequency or the golden rule ionization rate. EIT
with matched pulses allows the use of pulses, or a train of
pulses each of which is arbitrarily short. To within the
rotating wave approximation and following front-edge
preparation, these pulses propagate without loss and
without dispersion.

In summary, we have shown how, following front-edge
preparation, matched pulses propagate self-consistently
without loss and without dispersion in an absorbing
media. This process is described in terms of paired vari-
ables which are the normal modes of EIT [10].
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