Azimuthal Dependence of Sticking Probability of O_2 on Ag(110)

L. Vattuone, C. Boragno, M. Pupo, P. Restelli,^{*} M. Rocca, and U. Valbus

Centro di Fisica delle Superfici e delle Basse Temperature del Consiglio Nazionale delle Richerche and Istituto Wazionale di Fisica della Materia, Dipartimento di Fisica, Via Dodecanesco 33, 16146 Genova, Italy

(Received 29 April 1993; revised manuscript received 25 October 1993)

The chemisorption dynamics of O_2 and Ag(110) was studied by molecular beams and high resolution electron energy loss spectroscopy by measuring the initial sticking probability S_0 as a function of the molecular translational energy E_i and angle of incidence θ_i along $\langle 001 \rangle$ and $\langle 1\overline{1}0 \rangle$. S_0 scales as $E_i \cos^n \theta_i$ with $n = 1.1$ along (001) and $n = 1.6$ along (110). This indicates that parallel momentum has a role in promoting adsorption. The effect is connected to the amplitude of the corrugation seen by the O_2 molecule.

PACS numbers: 68.10.Jy, 82.65.My

New insight into the dynamics of the adsorption process in chemisorption has been found recently by using molecular beam techniques to study the dependence of the adsorption probability on incident kinetic energy E_i , angle of incidence θ_i , surface temperature T_s , surface coverage Θ , and internal energy of the beam. The observed features indicate that adsorption is a very complicated phenomenon which can hardly be explained in terms of a simple one-dimensional barrier as was done, for instance, in the pioneering work of Balooch et al. [1]. Several different processes do in fact contribute, depending on surface structure and on the chemical nature of the incident molecule: A direct process without activation barrier was observed, e.g., in the case of H_2 or Ni(110) [2], while quantum tunneling was found to dominate in the dissociative chemisorption of CH_4 on $W(110)$ [3]. In most cases the initial sticking probability scales [4] with normal energy $E_i \cos^2 \theta_i$, but scaling with total energy was reported, e.g., for N_2 on W(110) [5]. Quasidirect dissociation occurs for O_2 on Pt(111) [6], while both precursor and direct processes are active for N_2 on W(001) [7]. Finally, the internal degrees of freedom of the molecule have a strong influence in the dissociation process as demonstrated for D_2 on Cu(111) [8].

In spite of this large amount of experimental work, no dependence of the sticking probability on surface corrugation has so far been reported. Recently an investigation in this direction was performed by Hayden and Lamont [9], who measured the dissociation of H_2 on Cu(110), and by Hodgson, Nesbitt, and Lewin [10] for $O₂$ on Cu(110). Both groups observed a substantial insensitivity of the initial sticking probability for scattering along the two high symmetry azimuthal directions.

In this Letter we report on the first evidence for the existence of an effect connected to surface corrugation on S_0 . The system studied, O_2 -Ag(110), was chosen since it couples a strong corrugation associated with the nature of the interaction [11] to a large anisotropy of the surface. In addition, Ag(110) has been studied extensively in the past because of the importance of silver as a catalyst for the partial oxidation of ethylene, using several experimental techniques such as thermal desorption spectroscopy (TDS), high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), xray photoemission spectroscopy, ultraviolet photoemission spectroscopy, ion and He scattering, and scanning tunneling microscopy. These studies evidenced the presence of a molecularly chemisorbed state at temperatures lower than \sim 120 K and of an atomic state above \sim 190 K. A physisorbed precursor state is present at low temperatures (less than \approx 40 K) and a recent near edge x-ray absorption fine structure experiment studied its orientation and growth [12]. A semiempirical LEPS (London-Eyring-Polanyi-Sato) potential was developed by Lin and Garrison [13] and more recently Upton, Stevens, and Madix [14], van den Hock and Baerends [15], and Nakatsuji and Nakai [16] calculated the potential energy surface using *ab initio* methods.

The experimental setup and the method used for determining the initial sticking probability are described in great detail in Refs. [17,18]. Here we limit ourselves to a short description of its essential features. The O_2 is provided on the Ag(110) surface with a supersonic molecular beam. The incident energy of the beam is varied from 0.088 to 0.615 eV by seeding in He and by changing the nozzle temperature from room temperature to $T \approx 600$ K. At these temperatures the population of the excited vibrational levels is negligible. The energy distribution is determined by time-of-flight techniques and resulted in $\Delta E/E = 0.2$ FWHM. The angular divergence of the beam is 0.5° .

The Ag crystal was cleaned in situ in an UHV chamber with a base pressure in the lower 10^{-8} Pa range, by sputtering with 2 keV Ne ions. After sputtering the crystal was heated to 700 K for at least ^l min. Care was taken not to heat the sample above this temperature to avoid crystal evaporation and reconstruction. Sample cleanliness was controlled by Auger electron spectroscopy and EELS. Such a procedure was repeated several times until no peak due to vibrational modes of adsorbed species was detected by EELS. The sample is mounted on a manipulator which allows us to rotate the crystal with respect to the molecular beam and provides e-beam heating and liquid nitrogen cooling. Two differential pumping stages separate the expansion chamber of the nozzle beam (base pressure with the beam on $\approx 10^{-1}$ Pa) from the main chamber where the crystal is located. The base pressure in the main chamber varies from 10^{-8} Pa with the beam off to 10^{-7} Pa with the beam on.

The amount of oxygen adsorbed on the surface is determined as described in Ref. [17] by high resolution EEL spectrometry, after a calibration procedure with LEED. The EEL spectrometer is capable of a resolution
of 5 meV with a current of 5×10^{-11} A in the direct of 5 meV with a current of 5×10^{-11} A in the direct beam. The spectrometer has been developed and constructed in our laboratory [19] following Ibach's design [20].

A typical energy loss spectrum, recorded after an exposure of 55 sec to a 3.5% O_2 beam seeded in helium with the crystal at room temperature, is reported in the inset of Fig. 1. The scattering conditions of the electrons are chosen in order to favor dipole scattering: Incident energy is 1.23 eV and incident angle is 63° . All the measurements presented in this paper were taken under this scattering condition. The ratio I/I_0 of loss peak intensity I to the elastically reflected beam I_0 , recorded as a function of exposure, allows the determination of the initial sticking probability S_0 . I/I_0 is proportional [21] to the number density of molecules captured by the surface n_s and to the square of the dynamic dipole moment μ of the adsorbate molecules, $I/I_0 = A\mu^2 n_s$, where A is a constant which depends on spectrometer parameters. The relative loss intensity is directly proportional to n_s if the dynamical dipole moment does not depend on coverage. The exposure n_i is determined by measuring the flux Φ of the oxygen and the exposure time t ; n_i is given by $n_i = \Phi t \cos\theta_i$, where t is the opening time of a shutter which can flag the beam off.

In Fig. 1 a typical I/I_0 vs exposure plot is reported. Both coverage and exposure have been normalized to the surface density of Ag(110), $n_0 = 8.4 \times 10^{14}$ atoms cm⁻². Thus $\Theta = n_s/n_0$ and $\chi = n_i/n_0$. The coverage, as reported on the right of Fig. 1, was calibrated by assigning the I/I_0 value to Θ = 0.25 in correspondence with the appearance on the LEED screen of the 4×1 structure. Below Θ =0.25, the proportionality between relative intensity and coverage assumed in the previous equation is satisfied as confirmed by Backx et al. [22], who showed that for coverages below the 4×1 structure the ratio I/I_0 is directly proportional to the oxygen coverage within an experimental accuracy of 13% (given by a 0.8 eV change of the work function measured with a precision of 0.1 eV). A nonlinearity occurs for higher coverages and was explained by dipole-dipole interaction. The value of S_0 is obtained by fitting the experimental curve with a polynomial of third order and taking the derivative of the fitting curve for zero exposure. Following this procedure S_0 in Fig. 1, for instance, comes out $S_0 = 0.072 \pm 0.008$.

 S_0 was measured for several incident angles (θ_i from 0° to 75°) and energies (E_i from 0.088 to 0.615 eV) of

FIG. l. Coverage vs exposure plot as determined by the experimental value of I/I_0 after calibration. $\Theta = n_i/n_0$ and $\chi = n_s/n_0$. The surface is exposed to a 3.5% O₂ seeded in He beam incident at an energy of 0.³² eV and an angle of 60.0' with an intensity of $(0.59 \pm 0.01) \times 10^{14}$ molecules cm⁻². The surface temperature is 294 K. S_0 calculated as reported in the paper is 0.072 ± 0.008 . The continuous line is the fit to the experimental data obtained with a cubic polynomial function. The inset reports a typical energy loss spectrum. The spectrum has been recorded after an exposure of 55 sec. The resolution of the spectrometer is 7 meV. The loss at 40 meV is the vibration of atomic oxygen bound to the surface. The ratio I/I_0 is directly proportional to the oxygen coverage Θ .

the O_2 beam impinging along the high symmetry directions $\langle 001 \rangle$ and $\langle 110 \rangle$. Figure 2 reports S_0 along $\langle 110 \rangle$ and Fig. 3 along (001). Some of the data points were recorded more than once. The values reported in Figs. 2 and 3 correspond to the average and the error bars to a mean deviation of 25%. As this error is larger than the uncertainty of 13% discussed above, we assumed this value for the error bar reported in Figs. 2 and 3. We find that S_0 scales with an effective energy $E_e = E_i \cos^n(\theta_i)$ and shows the S shape typical of the presence of a barrier distribution, whose height E_0 and width W can be estimated, according to Ref. [23], from the fitting function

$$
S_0 = \frac{1}{2} \left[1 + \tanh \left(\frac{E_e - E_0}{W} \right) \right].
$$

511

FIG. 2. Initial sticking probability S_0 as a function of $E_i \cos^{1.6}\theta_i$. The data are taken along the $\langle 1\bar{1}0\rangle$ azimuth at 294 K. The same symbol refers to the same incident energy. The measured incident angles range from 0° to 75°. \circ : $E_i = 0.088$ eV; \Box : $E_i = 0.305$ eV; \diamond : $E_i = 0.615$ eV. The inset shows a sketch of the geometry of the experiment and of the structure of the (110) surface along $\langle 1\bar{1}0\rangle$.

For $n = 2$, E_e corresponds to the energy associated with motion normal to the surface as expected from a completely uncorrugated interaction potential. Values of $n < 2$ are expected for a corrugated surface. Along $\langle 110 \rangle$ $n < 2$ are expected for a corrugated surface. Along $\langle 1\overline{1}0 \rangle$
the best fit parameters are $E_0 = 0.26$ eV, $W = 0.09$ eV, and $n = 1.6$ with $\chi^2 = 0.57$; along $\langle 001 \rangle$ we find $E_0 = 0.28$ eV, $W = 0.09$ eV, and $n = 1.1$ with $\chi^2 = 0.65$. E_0 can be compared with the value of 63 meV measured by Campbell [24] by thermal desorption. The difference is connected to the different definitions of barrier height. In the present case E_0 is the average value of the distribution of barriers, while the desorption experiment probes the lowest energy path [25]. This barrier is between the physisorption and the molecular adsorption state.

The anisotropy in the sticking probability is present also at low crystal temperatures where no dissociation takes place as shown in Fig. 4, where S_0 is reported vs θ_i along both high symmetry directions for $E_i = 605$ meV at $T=83$ and 278 K. In this case S₀ was measured by the method of King and Wells [26] to prove the absence of effects caused by systematic errors of the EELS method. Moreover, the EELS method is quite inaccurate at low temperature, where no calibration is possible as O_2 forms no ordered structures [27]. The method of King and Wells is, on the other hand, less sensitive so that only data with high sticking probability can be recorded. The observed effective energy scaling along both directions implies that the parallel momentum of the incident O_2 molecule is important in promoting the adsorption. The similarity of the behavior for dissociative and molecular sticking indicates that the mechanism causing the anisotropy of S_0 acts already before dissociation takes place. It requires a strong corrugation of the gas-surface potential of a precursorlike state in which the molecule is temporarily trapped: In fact in the case of Cu(110) where no

FIG. 3. Initial sticking probability S_0 as a function of $E_i \cos^{1.1} \theta_i$ at 294 K. The data are taken along the $\langle 001 \rangle$ azimuth. The measured incident angles range from 0° to 75° . O: $E_i = 0.088$ eV; \Box : $E_i = 0.18$ eV; \Box : $E_i = 0.32$ eV; \times : $E_i = 0.470$ eV; \Diamond : $E_i = 0.615$ eV. The inset shows a sketch of the geometry of the experiment and of the structure of the (110) surface along $\langle 001 \rangle$.

azimuthal dependence of the sticking coefficient was observed [10], no precursor is present.

The precursor state therefore plays the dominant role in converting the translational energy. The observed anisotropy implies as a consequence that the dissociation occurs in the troughs of Ag(110). This consideration is supported by the calculations of Upton, Stevens, and Madix [14] who found that chemisorption takes place in the troughs at the long bridge site with the O_2 molecule oriented preferably along the $\langle 1\bar{1}0 \rangle$ direction. Such a state was observed at low crystal temperature [28].

FIG. 4. Initial sticking probability S_0 as a function of the incident angle θ_i for the same experimental conditions along the $\langle 110 \rangle$ and $\langle 001 \rangle$ azimuths measured using the King and Wells method for different surface temperatures. The inset shows the surface geometry and the scattering directions. The figure shows the site of the molecular precursor. It is placed in the grove between two atoms with the axis along the $\langle 1\overline{1}0\rangle$ azimuth.

As a consequence of these observations we suggest the following mechanism for the dissociation process: the O_2 overcomes the barrier and is temporarily trapped in the O_2^2 state also at room temperature; the lifetime of this state must be considered much shorter than the time required to perform the experiment in order to escape our observation; in this time the molecule moves along the surface and part of the available translational energy is transferred into 0-0 stretching motion. The stretched molecule can meet the bond length required for the adsorbed state thus favoring adsorption which is followed by dissociation. The coupling between translational and vibrational energy is more effective along (001) than along $\langle 1\bar{1}0\rangle$ because the potential of O_2^2 ⁻ Ag(110) is more corrugated. On the contrary, because of the weaker corrugation, the energy transfer mechanism is less efficient along $\langle 1\bar{1}0\rangle$. In this direction, in fact, the sticking probability scales with $n = 1.6$, a value closer to $n = 2$ observed for uncorrugated systems. It is not surprising that no azimuthal anisotropy was reported for H_2 and O_2 on $Cu(110)$ [9,10]: In these systems no molecular precursor is present.

In conclusion, we have reported on the first experimental evidence of azimuthal anisotropy in chemisorption of a gas molecule with a surface. We have given evidence that the effect is connected to the strong anisotropy of the potential of the molecular precursor state.

The authors wish to thank all the technical staff of the Centro di Fisica delle Superfici e delle Basse Temperature del CNR for technical assistance. The cleverness of A. Gussoni was determinant in building the EELS spectrometer. G. P. Grivio, S. Holloway, A. C. Levi, T. Rahman, and G. Tantardini are acknowledged for stimulating discussions.

Permanent address: Dipartimento di Fisica dell' Universita di Milano, Milano, Italy.

- [I] M. Balooch, M. J. Cardillo, D. R. Miller, and R. E. Stickney, Surf. Sci. 46, 358 (1974).
- [2] H. J. Robota, W. Vielhaber, M. C. J. Segner, and G. Ertl, Surf. Sci. 155, 101 (1985).
- [3] C. T. Rettner, H. E. Pfnür, and D. J. Auerbach, Phys. Rev. Lett. 54, 2716 (1985).
- [4] E. Por, G. Haase, O. Citri, R. Kosloff, and M. Asscher, Chem. Phys. Lett. 1\$6, 553 (1991).
- [5] D. J. Auerbach, H. E. Pfnür, C. T. Rettner, J. E. Schlaegel, J. Lee, and R. Madix, J. Chem. Phys. 81, 2515 (1984).
- [6] A. C. Luntz, M. D. Williams, and D. S. Bethune, J. Chem. Phys. \$9, 4381 (1988).
- [7] C. T. Rettner, E. K. Schweizer, and H. Stein, J. Chem. Phys. 93, 1442 (1990).
- [8] C. T. Rettner, D. J. Auerbach, and H. A. Michelsen, Phys. Rev. Lett. 6\$, 1164 (1992).
- [9] B. E. Hayden and C. L. A. Lamont, Surf. Sci. 243, 31 (1991).
- [10] A. Hodgson, A. Nesbitt, and A. Lewin, Surf. Sci. 293, 211 (1993).
- [I I] M. E. M. Spruit, P. J. van den Hock, E. W. Kuipers, F. H. Geuzebroek, and A. W. Klein, Phys. Rev. B 39, 3915 (1989).
- [12] R. J. Guest, B. Hernnas, P. Bennich, O. Bjornehim, A. Nilsson, R. E. Palmer, and N. Mårtensson, Surf. Sci. 278, 239 (1992).
- [13]J. H. Lin and B. J. Garrison, J. Chem. Phys. \$0, 2904 (1984).
- [14] T. H. Upton, P. Stevens, and R. J. Madix, J. Chem. Phys. \$\$, 3988 (1988).
- [15] P. J. van den Hock and E. J. Baerends, Surf. Sci. 221, L791 (1989).
- [16] H. Nakatsuji and K. Nakai, J. Chem. Phys. 98, 2423 (1993).
- [17] M. Rocca, U. Valbusa, A. Gussoni, G. Maloberti, and L. Racca, Rev. Sci. Instrum. 62, 2172 (1991).
- [18] M. Rocca, P. Traversaro, and U. Valbusa, J. Electron. Spectrosc. Relat. Phenom. 54/55, 131 (1990).
- [19]L. Vattuone, M. Repetto, and M. Rocca, Compel ll, 85 (1992).
- [20] H. Ibach, High Resolution Electron Spectrometer. The Technology of High Performance, Springer Series in Optical Science Vol. 63 (Springer-Verlag, Heidelberg, 1991).
- [21] H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York, 1988).
- [22] C. Backx, C. P. M. De Groot, P. Biloen, and W. M. H. Sachtler, Surf. Sci. 12\$, 81 (1983).
- [23] J. Harris, Surf. Sci. 221, 335 (1989). More precisely, E_0 is related to the height of the barrier since it represents the midpoint of the rise in S_0 and W is a parameter describing the shape of the saddle point.
- [24] C. T. Campbell, Surf. Sci. 157, 43 (1985).
- [25] D. J. Auerbach, H. E. Pfnür, C. T. Rettner, and J. E. Schlaegel, 3. Chem. Phys. \$1, 2515 (1984).
- [26] D. A. King and M. G. Wells, Surf. Sci. 29, 454 (1971).
- [27] M. Rocca, L. Vattuone, C. Boragno, and U. Valbusa, J. Electron. Spectrosc. Relat. Phenom. (to be published).
- [28] D. A. Outka, T. Stöhr, W. Jark, P. Stevens, J. Solomon, and R. J. Madix, Phys. Rev. B 35, 4119 (1987); J. Stöhr and D. A. Outka, Phys. Rev. B 36, 7891 (1987).