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Series for the %'ilson functions of an "environmentally friendly" renormalization group are computed
to two loops, for an O(N) vector model, in terms of the "floating coupling,

"
and resummed by the Pade

method to yield crossover exponents for finite size and quantum systems. The resulting effective ex-
ponents obey all scaling laws, including hyperscaling in terms of an effective dimensionality, d, ff =4 —

y&,

which represents the crossover in the leading irrelevant operator, and are in excellent agreement with

known results.
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Physical systems can exhibit different scaling behavior
in different asymptotic regimes. The crossover between

such asymptotic regimes is important both theoretically
and experimentally. One may think of a crossover as be-

ing induced by some "environmental" variable. Two of
the most interesting crossovers are those induced by
finite-size [I] and quantum [2] effects. For finite-size

systems the environmental variable is L, the system size,
while in quantum systems it is the inverse absolute tem-

perature, PI1 [3].
The main difficulty in treating systems which exhibit a

crossover is that the qualitative nature of the efl'ective de-

grees of freedom (DOF), i.e., the fluctuations, changes
significantly as a function of scale, being very sensitive to
the environment in the crossover region. The renormal-

ization group (RG) is our most powerful tool for investi-

gating such changes. If one views the RG transformation

as a "coarse graining" procedure, one must ask whether

a particular coarse graining captures the qualitative

changes associated with the crossover. One must be care-
ful not to throw away important environment dependence

by arguing for g independent RG flow equations from the

limit of large momenta k)&g, ~here g is the characteris-
tic scale set by the environment, as when propagated to
scales k & g these coarse grain eA'ective DOF which are a

very poor representation of the system's fluctuations at
that scale. We call an RG which tracks the changing na-

ture of the effective DOF—"environmentally friendly.
"

The most accurate RG results for properties of critical
systems have been achieved by applying field theoretic
techniques [4], and are in very impressive agreement with

experiment [5]. Three approaches have been used: s ex-

pansion [6], N expansion [7], and fixed dimension per-

turbation theory [8]. The first fails in crossovers where

the upper critical dimension changes, such as in finite-size

crossover. The second fails in crossovers where the order
parameter can change its symmetry, such as bicritical
crossover. We adopt the spirit of the fixed dimension ap-

proach, if not the letter, in the context of environmentally

friendly renormalization.

Field theory RGs, historically, have emphasized the

role of ultraviolet divergences, which are independent of
infrared scales and therefore environment insensitive;

however, failure to track the changing nature of the

effective DOF leads, typically, to a breakdown of pertur-

bation theory. More environmentally friendly RGs have

been implemented in some contexts [9-13]. Schmeltzer
[14] calculated y, tr to one loop for a three-dimensional

quantum ferroelectric, and Lawrie [15] considered

dimensional crossover for d-dimensional quantal and

(d+1)-dimensional finite-sized Ising models for 3 &d
&4 using an s expansion. Unlike our method the s ex-

pansion could not capture the crossover between two non-

trivial fixed points as the upper critical dimension

changes across the crossover. Field theoretic results for

dimensional crossover in a fully finite geometry or a

cylinder have been obtained [16] but the techiques used

have not been extended to the case of a system with more

than one fixed point.
Though our general approach is applicable to a very

wide class of crossovers [11,17], we restrict our attention

to finite-size crossover and quantum-classical crossover.

We begin with the "microscopic" Landau-Ginzburg-

Wilson Hamiltonian

H[ptt] = d +'x (Vptt) —+—mttptt+ ttt(x)v tt—
2 2 2

+ iatt Htt(x)hatt4

which describes either a layered (d+1)-dimensional sys-

tem of thickness L or a d-dimensional quantum system

with L =Ph, P being the inverse temperature. We will

assume the order parameter possesses an O(N) symme-

try; the case 5 =1 of quantum-classical crossover repre-

sents an Ising model in a transverse magnetic field. In

the finite-size case mg+tg=T —To, and in the Ising

model in a transverse field mg+tg =I —I o. Here To and

I 0 are the critical temperature and transverse field, re-

spectively, in the mean field approximation.
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(2)

with

8 I tl+P +y, it ——y, N+ytt
Bt 2 ay,

L-dependent normalization conditions yield an environ-

mentally friendly RG and ensure that all diagrammatic
information is exponentiated in the solution of the result-
ing RG equation. The relation between the bare and re-
normalized vertex functions is I PP' 1=Z& t

Z&ixr'~"'. The renormalized dimensionful coupling is

similarly related to the bare one by Xtt =Z& 'k (for nota-
tion see [4]). We choose the normalization conditions

(i) I & &(k=0, t =x g, L, tr) =N-'

gl- (2)(ii), (k, t = trzk, L, a-) =I,
tlk k -o

(iii) r'+(k -O, t =x2, X,L,a) =X,
(iv) f'""(k -O, t =ah„L,'tr) = I,

which specify Z&, Z&i, and Zq. Condition (i), together
with the multiplicative renormalization of t, implies that t

is proportional to T T,—(L) for the finite-size system,
and I —I,(P) for the quantal Ising model, i.e., that one is

measuring temperature/field deviations relative to the L

dependent critical point. %e are assuming the system ex-
hibits critical behavior for any value of L, which restricts
our attention to d & 1 in the case of A & 1, but in no way

restricts the generality of our approach [18]. The RG
equation derives from the normalization point indepen-
dence of the bare theory, i.e., trd/daI PP =0. Using the
relation between the bare and renormalized vertex func-
tions and expressing things in terms of the renormalized
parameters the infinitesimal form of the RG equation

I then becomes

(3)

I dZ~ I de' P(A, ) I dZi

Z i dN k Zi dx'
(4)

The functions y&, y&i, and yi are the Wilson functions. They are explicitly L dependent due to the normalization condi-
tions (2) and all the physics of the crossover can be gleaned from them. Note that we are here using an RG which runs
the renormalized temperature parameter in distinction to the Callan-Symanzik equation which runs the physical corre-
lation length.

A suitable coupling, with respect to which perturbation theory can be performed, is the floating coupling [11,19], h,
which is chosen so as to make the quadratic term in P(h) have unit coefficient. Our perturbation theory is then carried
out at the level of the Wilson functions in terms of h. The expressions obtained are, however, only the leading terms in

an asymptotic expansion of the functions P(h, z), y&i(h, z), and y&(h, z). We use [2/ll Pade approximants to resum

these asymptotic series obtaining

P(h, z) = -a(z)h+
1+4[[(5N+22)/(N+8) 1fi(z) —[(JV+2)/(N+8) ]f2(z)[h

(5)

(7)

+n, n, I/M m, )f, z)=4
( „I/m')'

with m;=(I+4m n; /z )', mfz=[I+(4n lz )(n~+n2) 1', M=m~+m2+m~2. We plot c(z), f~(z), and f2(z)
against ln(l/z) in Fig. I.

Effective critical exponents, defined as logarithmic derivatives of the associated thermodynamic quantities with
respect to T —T,(L) at fixed L, for the finite-size crossover and with I —I,(p) for fixed p in the quantum problem, us-
ing the above RG [11,21] can be shown to obey all the usual scaling relations including hyperscaling. The usual dimen-

507

,f,(z)h',(N+2)
N+8)2 (6)

(h ) (N+ 2) h

(N+8) I+ [6/(N+8)] [f)(z) —'q f2(z)]h
where the functions a, f~, and f2 depend on d and z= x'L but are independent of N. The original non-pade resummed
series can be recovered by expanding I/(I+&h) —I —xh. We will take the solution of (5) as our perturbation parame-
ter. After these equations are solved it is then inappropriate to do any further expansion.

Th«unctions a(z), f~(z), and f2(z) are the basic building blocks, their specific functional form depending on tile
pa«icuia«rossover in question. a(z) can be thought of as being a measure of the "effective dimensionality" of the sys-
tem. Numerical evidence for an effective dimensionality was found in [201. The functions f~ and f2 for general d and
the crossovers of interest here can be found in [17]. For d =3, the expressions become especially simple; we find

e(z) = I —z In 'gm
, n

X„,,[(1/m ) )(I/M —Il2m2)+ (I/m )M )(I/m (+2/m2)]fi(z) =2
(Q„I/m )
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FIG. I. s(x), fi(x), and f2(x) vs x In(/L/L). FIG. 3. i),s vs x ln((L/L) for JV 0, 1,2, and 3.

sion is replaced by the eAective dimension d, ff 4
which reAects the changing importance of the leading ir-
relevant operator. As a consequence these exponents are
related to the Wilson functions through v,ir= I/(2 —

y&2),

rl, ir y~, y,n (2 —y&)/(2 —yaz), a,ir
= (yi, —2 yq2)/(2—y»), P,ir (2 —yq+ y&)/(4 —2 y&2), and B,ir = (6 —

yi—y&)/(2 —
yi. +y&). Analogous effective exponents asso-

ciated with variations with respect to L at fixed T, and P
at fixed I, can also be defined and computed.

We present our results in Figs. 2-5. In all graphs the
horizontal axis is In((L/L). The different curves corre-
spond to N 0 (polymers), N I (Ising), N=2 (XY),
N 3 (Heisenberg), and N=~ (spherical model) and
represent both a four-dimensional layered geometry of
thickness L and a three-dimensional quantum model at
Ph L. The logarithmic corrections to scaling at the
bulk end are clearly visible, and are as expected from
four-dimensional calculations. All curves are with the
boundary condition h I at In((L/L ) = —20; the value of
h at the initial scale parametrizes diA'erent possible cross-
over curves but all curves asymptote to the same form. In

Fig. 2 we plot v,a, the correlation length exponent, for

N=~, v, ir=—I/(d, ir
—2) across the entire crossover. In

Fig. 3 we plot rl, s; the exponent which governs the falloA'

in critical correlations. This exponent is not a monotonic
function of N; it is identically zero for N= —2 and

N =~ and attains a maximum for some intermediate
value. This is the least accurate of our exponents and the
peak appears to be at N = I, though more accurate values
for this exponent suggest it occurs at higher values, prob-

ably N =3. Figure 4 shows a plot of the eA'ective specific
heat exponent a,ir which measures how the singular part
of the free energy changes as I" or T varies. The extra
case N = —2 is added here, since, in the case of dimen-

sional crossover it is distinguishable from the Gaussian
model due to the fact that yi, for the latter is zero,
whereas for the former it is nonzero, being a measure of
the changing effect of the leading irrelevant operator.
Across the entire crossover one has a,ir 2 —v,ird, ir. Not

only does one see the change in sign of the specific heat

exponent as a function of 1V, but also one sees that the
effective specific heat exponent can change sign as a func-

tion of (L/L. This is quite pronounced for the XV model

which starts off positive, increases, then turns negative at

eff N=-2
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FIG. 2. v,n vsx In()L/L) for N 0, I, 2, 3, and ~. FIG. 4. a,a vs x -ln(gi/L) for IV = —2, 0, l, 2, 3, and ~.
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agreement with known results and experiment. Our gen-
eral formalism is applicable to a wide class of crossovers.
Higher loop calculations should yield effective exponents
to the precision of standard critical exponents [23].
There is merit in pursuing such calculations as our
methods provide a direct and physical connection between
exponents in different dimensions.

-15 -10 -5 10 15

FIG. 5. yq vs x In(/L/L) for N —2, 0, I, 2, 3, and ~.

TABLE I. Asymptotic critical exponents.

—2
—

1

0
I

2
3
4

0a

0.0200
0.0295
0.0329
0.0332
0.0322
0.0305
0a

fp 2

08

0.145
0.277
0.388
0.479
0.552
0.611

1.800
1.820
1.785
1.732
1.675
1.621
1.573
1'

)'cff

1'
1.088
1.175
1.257
1.330
1.395
1.451
2'

off

05'
0.550
0.596
0.639
0.676
0.709
0.737
1'

a,ff

0.5'
0.351
0.211
0.083

—0.029
—0.126
—0.211
—1'

'These values are exact.

gL —100L. It would be interesting, based on the Harris
criterion for the relevance or irrelevance of weak disorder,
to see whether disorder could change from being ir-

relevant to relevant as a function of size, or temperature
in the case of a quantum system. In Fig. 5 we plot

yx 4 —d, tr which also gives information about the
effective dimensionality of the system. Notice that yq is

very robust to changes in N, varying very little across the
entire range of N, [—2, eo]. The other effective ex-
ponents can be determined from the effective exponent
laws, which we have verified also by direct calculation.
Asymptotic values of critical exponents and associated
quantities are tabulated below (see Table I). All these
values are in very good agreement with corresponding
high temperature series and experimental results (see
[22] and references therein). We believe the entire cross-
over curves are of similar accuracy.

In summary, fwo loop Pade resummed perturbation
theory for an environmentally friendly RG yielded
effective exponents for dimensional crossover in a four-
dimensional layered system with periodic boundary con-
ditions and for quantum to classical crossover in three di-
mensions. We paid special attention to polymers, the Is-
ing, XY, Heisenberg, and spherical models. Asymptotic
values for the exponents of these systems are in very good
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