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Kinematics of Relativistic Magnetic Reconnection
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We study the relativistic generalizations of two-dimensional Sweet-Parker and Petschek reconnection
models in the context of a relativistic pair plasma. The solutions show that if the outflow velocity from

the resistive region approaches the relativistic Alfven speed, the outflo~ density increase from Lorentz
contraction allows a much faster inflow and thus a faster rate of magnetic energy dissipation than in the

nonrelativistic regime. We briefly suggest applications of this result.

PACS numbers: 52.60.+h, S2.30.—q, 95.30.Qd

The process of magnetic field reconnection and dissipa-
tion can initiate from local field configurations subject to
pressure instabilities, or from external forces pushing op-
positely magnetized plasmas together [I]. We recognize
that the conditions under which various models of recon-
nection occur are not agreed upon [1-3],but that includ-

ing relativity does not add any more uncertain physics per
se. Here we study the kinematics of steady state relativ-
istic reconnection for the two schemes depicted in Fig. l.
In each case, flows of plasma with oppositely directed
magnetic fields meet along the x axis, and outflow per-
pendicular to the inflow ensues. We describe the dif-
ference between the schemes below.

Avoiding a singular buildup of inflow field flux on the x
axis requires a topology change, which in turn requires a
finite resistivity. Nonrelativistic singularity free solutions
for the inflow velocity have been obtained where resistive
elects are important only in a thin dissipation region
(DR) [2,3]. Here the current density is large as a result
of strong field gradients. The absence of flux freezing in

the DR allows magnetic field annihilation and outflow

()J/Qy

FIG. I. (a) Relativistic Sweet-Parker reconnection. (b) Rel-
ativistic Petschek reconnection. Small arrows indicate field

direction and large arrows indicate flow. The dissipation re-

gions are shaded. For the Petschek model, the macroscopic
field gradient length L is not shown because L && w.

perpendicular to the inflow. These regions are shaded in

Fig. l. Rapid, steady state reconnection maintains the

height of the DR, h((L, where L is the length scale of
the overall variation in the magnetic field.

The important difference between the Sweet-Parker [2]
(SP) and the Petschek [3] (PK) models of Fig. 1 is that
the length of the DR, ~, satisfies ~-L for SP and ~ &&L

for PK. In the PK outflow, the field reconnects, and its

tension thrusts the plasma away from the x point along
the x axis. Most of the energy conversion takes place
across standing shocks which stem from each corner of
the DR. The length of the DR is then determined by the

distance from the origin for which the Alfven velocity as-

sociated with the normal component of the proper frame

magnetic field is large enough to balance the inflow veloc-

ity.
For nonrelativistic flows, PK provides a faster rate of

reconnection for a given outflow velocity than SP. %'e

will show that in the relativistic regime, this feature is

maintained for outflows & c. For extremely relativistic

outflows, however, both can provide rapid energy conver-

sion because the Lorentz contraction of the outflow densi-

ty allows more plasma to flow through a given cross sec-

tion. %hen the magnitude of the inflow magnetic energy

density is larger than the rest energy density, the kinetic

energy of the ejected plasma will be relativistic.
In this paper we assume that the collisional term dom-

inates synchrotron radiation losses in the Boitzmann

equation and that the charge density, mean velocity, and

mean momentum vanish in the same frame. %e denote

quantities measured in this "proper frame" by a super-

script +. For PK we also assume that the outflow field is

very small compared to the inflow field, and that the

inflow four-velocity is much less than the outflow four-

velocity. These are mutually consistent assumptions.
%e employ Ohm's law, the magnetic induction equa-

tion, and the continuity equation to obtain the steady

state SP inflo~ velocity as a function of resistivity and

outflow velocity by enforcing ~*=L. To obtain the PK
solution, we then allow w* ((L, and must also use

energy-momentum conservation and the inflow field solu-

tion to find the ~* which maximizes the inflow rate. %'e
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work in Gaussian units.
Blackman and Field [41 show that Ohm's law for a rel-

ativistic pair plasma under fairly general conditions has
the MHD form

U»-rlc/8rry»h =t),rrc/8rrh*, (3)

where U» —= y» V» and r), ir
=—rl/y».

For a relativistic plasma satisfying (1), the particle
number conservation equation for steady Aow is given by
[41

FP~U =gjP

where j" is the current density, F""is the electromagnet-
ic tensor, g is the resistivity, and U" is a frame four-
velocity. We shall assume that the inflow and outflow ve-

locities are nearly constant and uniform so that the inflow

and outflow regions each have unique proper frames and
field gradients occur only in the DR. Using (1) and
Maxwell's equations, the inflow magnetic induction equa-
tion is given by

—r) B/r)r +c'y B

=(4xy»/rl) ft)B/t)t —Vx [(—V»y) x B]J, (2)

where Vy is the magnitude of the inflow velocity and yy is

its associated Lorentz factor. Let us approximate the
derivatives over small scales by the inverse of their size
scales. Thus, Ar is the time scale for Aux dissipation and
hx =It, the thickness of the DR. From (2) we obtain

outflo~ increases in proportion to yy. As a result of parti-
cle number conservation, this increase in outflow density
allows more particles to travel through a given outflow

cross section, increasing the rate of reconnection for a
given DR thickness. Equation (8) indicates that this
effect dominates the decrease in g,g. As the outflow ve-

locity approaches c, small velocity changes greatly
enhance this effect, so that although the yy may be ((y,
the Vy can approach V„.The energy conversion rate is

thus increased in the relativistic regime. The top curve in

Fig. 2 shows this result for SP. There we have plotted

Vy as a function of V„ for a constant factor of
R,/y„-8rrL/rlc-10 (R,» 1 for astrophysical plas-
mas).

Equation (8) suggests that a smaller DR length would

increase the inflow rate. If we relax the constraint that
w* =L, and instead allow the PK condition w* «L, then

the inflow field is bent as in Fig. 1(b). We must then

solve for the optimal w* that maximizes the ratio of
four-velocities, subject to the PK boundary conditions (to
be described later). The PK solution requires optimizing
the geometry so that the gain in outAow field tension
more than compensates for the difficulty of plasma inflow

opposite to the inflow tension. As in the nonrelativistic
regime, we expect this to improve the SP result. To gen-
eralize PK we must consider not only particle number
conservation as for SP but also energy-momentum bal-
ance, and the field solution in the inflow region.

Total energy-momentum conservation is expressed as

a(p*U;)/ax, =0, a ~»"=-a e»" (9)

where p is the mass density. Integrating this over the
four-volume gives

8»(p U")d x = p*U»dS» =const. (5)

For the very small DR, in the 2D steady state, this im-

plies

U/U»„=Ay*/A *x=h*/w*. (6)

To obtain the SP inflow velocity, we set w* =L in (6) and
combine with (3) to obtain

U»/U„= (rj,rrc/8rrU„L ) '~ .

Since the maximum outflow velocity is the Alfven veloci-
ty (-c) we have

where K"" is the bulk energy-momentum tensor, and e""
is the electromagnetic stress tensor. Since we assume
that the variation in the inAow and outAow wedges takes
place along the y and x directions, respectively, we will

change the partial derivatives to total derivatives in con-
sidering these regions separately. We assume that mag-
netic energy is converted either to bulk flow or scalar
pressure. The y component of (9) for the inflow region is

then given by

Log (Vyma~/c)

0

-0.5

y»' U» /U~, -(rlc/8+L)'~ =—R, ' (8)

~here R is the magnetic Reynolds number of the
outflo~. This is the relativistic analog of the nonrelativis-
tic result [2]. Note that (8) differs from a simple re-
placement of the nonrelativistic three-velocities by the
four-velocities because of the factor yy on the left-hand
side. This factor enters because the Reynolds number is
defined in terms of g not g,g.

Ho~ever, as g,g decreases, the number density of the

1 % 5
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FIG. 2. InV~ plotted as a function of V in units of c, for
Ro/y =lO . The top curve is the Petschek result [Eq. (29)l,
and the bottom curve is the Sweet-Parker result [Eq. (8)].
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P -e'/3.
Integrating (10) then gives

Pp-P;„-Bz2/8 (i+4U„'),

(i 2)

(i 3)

where Pp is the Auid pressure at the x point, and P;„is

the fluid pressure in the inAow wedge far away from the
DR, where 8 Br.x.

We assume that any change in magnetic field in the
outflow wedge is small. The x component of (9) there is

then

dP+ U, d(e +P) +2U, (e*+P)dU„=O. (i4)

dP+U»d(e +P)+2U»(e*+P)dU» —(B /4z)dB„,

(io)
where t. is the energy density, and P is the scalar pres-
sure. dU~ cannot absorb the change in B„sinceplasma
Aows in from both sides of the x axis. The change must
be accounted for by an increase in fluid pressure. Then
(10) becomes

dP+U»2d(e +P)- —(B~/4n)dB„.

To proceed further we employ the ultrarelativistic ap-
proximation to the equation of state for low densities and

high temperatures [5],

Alfven velocity associated with the proper frame field
normal to the shock to balance the parallel component of
the inflow velocity in the laboratory frame. For h&&~,
the angles are small, and this equality is given by

p/(. 2p)~/-l 2»rP (2i)

where a is the angle between the x axis and the shock
shown in Fig. 1(b). Note that BL =y'„BL, since F.
=E» =0, and V»J 8(.. Then using (16), (17), and (21),
we obtain in the small angle approximation

y 'g(U ) =(8/3)'I U „()4/L) p I (p* —a*)

(22)

where g(U») =U»/(1+4U» ) 'I .
Equation (22) gives one equation relating U» to U„„.

Let us obtain another from consideration of the field at
the top center of the DR (x O,y h, 8=)r/2). From
(17), (6), and (20) we have in the small angle approxi-
mation,

—u4 (h 4/L) 2p'/(x-2p')

Equation (23) is the second equation for U» as a function
of U„„.In the small angle limit, (22) and (23) give

p (2 = (3/8) )/2+*/y (1 +4U2) I/2 (24)

Using (12) and integrating gives

ln(Pp/P, ) ln(1+4U2), (15)

Plugging this into (22), we have

u 4 (w 4
/L ) 2P'/(a -2P')

J' Zmax~

where P„is the pressure in the outAow wedge. Therefore
Rearranging (24) we also have

0.77 ~ (2'/P' ~ 1, (26)

Pp/Pot 1+4U, . (i6)

All of the magnetic energy is converted to plasma kinetic

energy at the x point. The simplest case, and the one

which maximizes the outflow velocity, is when all of the

magnetic energy is converted into bulk kinetic energy. In

this case, P,& P;„,and we can substitute (13) into (16)
to obtain

U, , PB3/2 ()r1 +4U»)P;„. (i 7)

We assume that most of the change in 8 occurs within

the DR so that outside, 8 V)i/ and

a, a'~-0-a„a 1( (i8)

B,-B,(r/I. ) 'P"* 'P" s(n(e P)/(I —2P/~) . —(2o)

The presence of stationary shocks requires the relativistic

in the steady state [6]. Define r =
~
r

~

= (x +y ) and
8=tan 'y/x. Our PK boundary conditions are 8 V)p
=0 at r 0, 8 V)I/=B/. x at r =L, and Be 0 at H=P,
where P is the angle between the x axis and the field in

the inflow wedge shown in Fig. 1(b). The appropriate
solution of Laplace's equation in polar coordinates [6] is

B„BL(r/L)P ' P' cos(8 P)/(I —2P/rr), (—19)

since 0~ V»/c ~ 1. Thus a has a nearly constant rela-
tion to P over a full range of inAow velocities. We write

a*-kP*, (27)

k
U» „/U

ln y»+ in [R,]
(29)

Figure 2 shows how (29) allows V»
„

to approach V„.
„

for even smaller V than the SP result (8), since the
constant factor of R,/y„enters for PK only logarithmic-

ally. The combined rate enhancement effects of outAow

tension and Lorentz contracted outflow density described
earlier work together in the PK picture. Equations (29)
and (8) indicate that steady state reconnection can main-

tain relativistic inflows for relativistic outAows, allowing a
relativistic rate of magnetic energy conversion. %'e have

not discussed the details of the DR which are more im-

portant to SP than PK, since the latter has a smaller frac-

where k is approximately constant. (k = —,
' in the nonre-

lativistic limit. ) Using (3), (6), (25), and (27) we obtain

R 2p'Ix(kp+ ) () -4-p'Irr)

Define R, =—k R,. Then maximizing the left-hand side as
a function of P* gives the PK result



VOLUME 72, NU1VIBER 4 PHYSICAL REVIEW LETTERS 24 JANUARY 1994

tion of energy converted in the DR and depends only log-
arithmically on the resistivity.

We now discuss possible applications of these results to
jets of active galaXies (AG). Part of the energy in jet lep-
ton populations is likely produced by local acceleration
processes in order to maintain a power law distribution
over kiloparsec scales [7]. This in situ acceleration has
been thought to be due to stochastic and diA'usive shock
acceleration [7]. However, relativistic perpendicular
shock acceleration is only eA'ective for e+-proton-e
plasmas when the proton to e+ number ratio ~ 0. 1 [8].
Presently, it is di%cult to argue that relativistic reconnec-
tion provides an alternative for pure pair plasmas since
the spectrum of the reconnection outflow particles is not
well constrained by the theory. We simply note that time
scale for energy gain can be on the order of the synchro-
tron loss time.

With this in mind, we discuss an application which ap-
peals to the formation of shocks from the reconnection
outflow. Shock acceleration is a leading candidate to ex-
plain blazar jet knots [9] which are often observed at the
jet edges and can appear to move superluminally. If the
jet is composed of magnetically confined pair plasma, lo-
cal instability (kinking, for example) induced reconnec-
tion could induce rapid outflow into the ambient medium,
producing a shock. It is likely that the ambient medium
contains ions as well as leptons [10] so that the outflow
region would entrain ions. Acceleration by these shocks
would be consistent with the work of Hoshino et al. [8].

Another possible role of relativistic reconnection is as
an aid to the formation and radiative acceleration of pair
plasma blobs. This could occur even in conjunction with

magnetohydrodynamic models of AGN jets. Relativistic
reconnection could allow for very swift production of
these blobs if magnetic loops fly up and pinch off as the
result of unstable loop configurations [11]. One radiative
acceleration mechanism is the Compton rocket, based on
Thomson scattering from an underlying source of photons
[12]. This process is limited most strongly by a finite

source size (due to radiation drag) and by cooling losses,
which incur on the time scale of the bulk momentum
gain, thus inhibiting acceleration. l f the source of pho-
tons is strongly concentrated toward the nucleus of the
AG, then relativistic reconnection in the blob can steadily
maintain a spatial fraction of high energy electrons pro-
longing the effectiveness of bulk acceleration [12].

Finally, we make a general note that small scale recon-
nection near a large scale shock could provide the pre-
acceleration required [7] for shock acceleration.

We would like to thank A. Loeb and R. Kulsrud for
discussions.
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