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Group Velocity of Large Amplitude Electromagnetic Waves in a Plasma
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The nonlinear group velocity of a short intense laser pulse propagating in a cold underdense un-

magnetized plasma is examined. Analytical expressions for the group velocity are derived. These
expressions reduce to the usual t9to/t9k form for small amplitude and are verified for arbitrary am-

plitude using particle in cell simulations on a cyclic mesh. We 6nd that the leading edge of a pulse
moves at the linear group velocity and that the phase velocity of the excited wake is found to be
less than the group velocity of the pulse. The techniques used can be applied to other waves in a
plasma.

PACS numbers: 52.40.Db, 52.35.Mw, 52.40eNk

It has been recognized since Rayleigh [1] that, be-
sides the phase velocity vy, there are several velocities
associated with a wave which have physical significance.
Rayleigh defined the group velocity to be the velocity
of the envelope of a beat pattern constructed from two
waves (tort kt) and (tost kz). This velocity is given by

z' ——&z, which reduces to the often quoted result

vs ——~~~ in the limit that Eto and Ek approach zero
Other velocities associated with a wave are the energy
transport velocity [1], signal velocity [1], and the packet
velocity [1].

In particular, for a plane electromagnetic wave prop-
agating in an unmagnetized plasma it is well known

thet the group velocity is given by vs = col —erst/rvs,

and that the phase and group velocities are related by
vsvy = cz, where u„ is the plasma frequency and ~ is
the wave's frequency. Furthermore, it can be shown that
both the energy transport velocity and the packet ve-

locity are equal to vs. However, these relationships are
only true in the limit of infinitesimal wave amplitude. To
understand the complications which arise for finite wave

amplitude, consider Rayleigh's definition of the group ve-

locity in terms of the beat velocity of two weakly nonlin-

ear waves. Each wave now satisfies a generic dispersion
relation which depends on the amplitude of both waves

~1(kit kz, Alt Az) and tty2(kt t kz, A~ i Az). Therefore, cal-
culating && of two waves, or ~s of one wave, is now am-

biguous because it depends on whether Aq, Az, or some
combination of both is kept fixed. Furthermore, for a
wave packet with a spectrum of frequencies, rather than
a few discrete modes, it becomes impossible to even de-
fine a dispersion relation. As a result, there appears to
be little in the literature concerning or even defining a
nonlinear group velocity. An exception is the work of
Lighthill [2] and Whitham [3] who considered systems
with identifiable Lagrangians. They find that the only
velocity with a well defined nonlinear counterpart is the
energy transport velocity. In particular, Lighthill showed
that the energy transport velocity is equal to Bcu/Bk when

holding the Lagrangian density over cu fixed.

In this Letter we calculate for the first time the energy
transport velocity of nonlinear electromagnetic waves

propagating in unmagnetized plasmas. Besides being
of fundamental importance to nonlinear plasma physics,
it has practical implications for laser driven accelerator
schemes. In either the beat wave (PBWA) [4] or laser

wake field (LWFA) [5] schemes the large transverse elec-

tric fields of high intensity lasers are converted into longi-

tudinal electric fields of plasma waves. The longitudinal
waves must have a phase velocity very close to the speed
of light c in order that accelerated particles and the wave

do not dephase. The phase velocity of the plasma wave

is generally assumed to be the group velocity of the light

waves.
This Letter is outlined as follows. We first derive an ex-

pression for the energy transport velocity for long pulses

using the conservation of energy equation. We then com-

bine this equation with the quasistatic approximations
to obtain a nonlinear group velocity for arbitrary pulse

lengths. These results are then verified using particle in

cell (PIC) simulations on a cyclic mesh. Last, the con-

sequences of this work to the laser wake field scheme are
discussed. We note that recently Kuehl et aL [6] made a
weakly nonlinear analysis of the group velocity and wake

excitation of short pulses. We present a fully nonlinear

treatment. Furthermore, they concentrated on the times

larger than the pump depletion time, while we examine

the early time behavior which is more relevant to the
LWFA.

To obtain an energy transport velocity we begin with

Poynting's equation

c) /'Qz+ Qz) c
i
+ V —(E x B) + J E = 0 . (1)

Ot ( 87r ) 4n

Using the relativistic Quid momentum equation we can
write

J E = —(nrnc p) + V (nmc pv) .
Bt

(2)

Substituting Eq. (2) into Poynting's equation yields the
conservation of energy equation
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—(U)+ V ~ S =0. (4)

We average Eq. (4) over the high frequency oscillations

(( )) and define a local group velocity vs—:((&)) .
Furthermore, if we define the position of a finite pulse

as the energy weighted expectation value x = f dEEU

where the integration is over the length of the pulse, then
the velocity of the pulse, i.e., the group velocity, is given
by e~—:fx = f dx xS/ f dx xU where the conservation
of U is explicitly used.

Using these definitions, we find from Eq. (3) that

v = {—'E x B+nmc (p —1)v)
(5)

( ',+ '+nmc2(p —1))
To determine an analytic expression for the group ve-

locity we consider one dimensional wavelike solutions of
the form f(x vyt). In—the limit of electromagnetic pulses
much longer than 2nc/u~, the longitudinal electric field
can be neglected so that from Faraday's law E = ~B
Using this relationship, we reduce Eq. (5) to

1 + ~ (( /-1)gtv, ) vy

1 + c2/v2 + 2~ (( Y
—l) ft/tgP)

(s»)

where v~ = v~ x, y~ ——eEy

Expressions for vy can be found in Akhiezer and
Polovin [7] for both linearly and circularly polarized light.
The expressions can be summarized as v&2—

1—4P&/4P ')/~0 ~

where p&20 = 1 p {p2&/m2c ). If we define a nonlinear pa-
rameter p() = '~', where Eo is the amplitude of E, then
(p2&/m c ) = Po is used for circularly polarized light and
(pz/c ) = pz~/2 is used for linearly polarized light. The
circular polarization expression is exact while the linear

polarization expression is valid for -f « 1 [7—9]. For cir-
cularly polarized waves n = ns, so that Eq. (6) reduces
to

7
'Yl 0—~

~~ pzo{7&0+&)

where p~o is defined above. For linearly polarized waves,

this expression is valid to order ~ and can be derived
by Taylor expanding Eq. (6) . For small amplitude, i.e.,

1, we recover the usual relationships v~vs ——c and

vs ——Bw/Bh = c)f/I —tvs/ws.

c) (E2 y B2

c)t E 8z. + nmc2(p —1)
~

q.V. ( E xB+ orner(p —1)v) = 0. (3)
E47r

A local energy transport velocity can be found by noting
the above expression is of the form

The functional dependence of )( is described by

(8)

where k„= (d„/c. For short pulses y is predominantly a
plasma wave wake. This wake is the basis of the LWFA.
The long pulse limit can be recovered by neglecting P
in Eqs. (8) and (9).

It has been shown [8] that I)) grows on (d„ l time scales.
a~g&In Perticnler, 0 (ftc s ), where g = 0 ie the front

of the pulse, so that ff|t « 1 when ( & ' . Therefore,
the local group velocity of the very front of a pulse, or
the group velocity of ultrashort pulses lo « c/u„, can
be obtained by Taylor expanding Eq. (8) in terms of
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However, for nonlinear amplitudes this simple rela-
tionship between vy and vs does not hold and Eq. (7)
is not recovered by simply differentiating the nonlinear
dispersion relationship while holding p 6xed. The im-
portance of the nonlinear corrections to the v~vs rela-
tionship can be most easily demonstrated by examin-
ing p~

= (1 —V2/c ) l/'2. Assuming vs = c/v~ gives

qs ——s/qccw/toe while Eq. (I) gives qs )1';+' sr/ws

in the (d„« (d limit.
For pulses which are less than a few plasma wave-

lengths 2zc/u~ long, a plasma wake Beld is excited and
the relationship E = ~B does not hold. However, if
we denote the laser Beld with E~ and the plasma wake
Beld with E)~f then Eg = ~Bg and B~~ = 0. We are in
the short pulse regime so we make use of the quasistatic
approximation [8]. The quasistatic approximation con-
sists of neglecting ~ in the continuity equation and in
the longitudinal equation of motion after a mathemati-
cal transformation has been made from the (x, t) to the
(( = x —ct, 7. = t) coordinates. The result is a coupled
set of nonlinear equations for the scalar potential I and
the vector potential A. We emphasize that using the
conservation equation derived from the quasistatic equa
tions by thenlselves, provides an incorrect value for the
group velocity [10]. However, the quasistatic equations
give correct amplitudes for the fields and vy so when these
fields are substituted into Eq. (5) a correct value for vs
is obtained.

2

The quasistatic approximation gives ~ ——1—
Oy

8nv, = (n —no)c, p = ~ 2„",and EI ——P&t where y =
1+/ and p&2

——1+a2, with P = eC/mc and a = eA/mc .
We use these relationships and some algebra to obtain a
local value for the group velocity of a light pulse in the

-f « 1 limit,

c /V(()

( 2
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Noting that ~(Q) ~ qP and neglecting terms of

2 4p 2
order P gives vs = 1 —~. We therefore conclude that
the group velocity for the leading edge of long pulses, as
well as the group velocity for ultrashort pulses, is the
linear group velocity irrespective of the wave amplitude.
For intermediate length pulses, lp ~ c/u„, it is difficult
to obtain a closed form expression for the local v~. In
principle, y must first be solved using Eq. (9) and then
substituted into Eq. (8). The pulses group velocity is
then obtained by averaging the local value over the entire
pulse.

These analytical expressions were investigated using
the electromagnetic particle-in-cell code IsIs which has
recently been modified to include a cyclic mesh. The
cyclic mesh is a technique for following short pulses by
removing columns of cells from far behind the pulse and
placing (cycling) them at the front of the pulse with fresh
particles. The cycling rate is chosen so that the grid
moves at a speed c. These simulations are done in the
x-y plane with linear polarization in the z direction. We
initialize a laser pulse in vacuum and let it propagate in
the 2: direction into the plasma. The initial profile is of
the form ', = ~ ~ sin ($I-) sin(~x).

We first verified the expression for the phase velocity
for both circularly and linearly polarized light. This was
done by tracking the position of wave crests. The scal-
ing with both p and v/~„was confirmed. The group
velocity was measured by calculating the pulse's energy

dz sE
weighted expectation position defined by x =

z *z, at

every time step and then evaluating vs = ~x at the end
of the simulation. We weighted the position using E&
rather than the entire energy U. It can be shown [10]
that this gives an error to vs on the order of a~4/A&4 in
the long pulse limit. If this is not done in the short pulse
limit, the calculated group velocity would have been art;i-

ficially lower than the theoretical value because the wake
left behind the pulse, being a space charge wave, has zero

energy fiux but a nonzero energy density. A typical simu-

lation result is shown in Fig. 1(a) for u/a& = 5.0,pp = 3,
and lp = 10c/u„. We see that in the vacuum region the
curve is fiat, indicating a group velocity very close to the
speed of light. Thus, the numerical dispersion associated
with the field solver is much less than the plasma disper-
sion. Inside the plasma the group velocity [the slope of
Fig. 1(a)] remains very constant for many plasma peri-
ods, thus allowing for very accurate measurements. As
the pulse propagates further in the plasma, pump deple-
tion occurs. Pump depletion results from pulse distortion
and a lowering of the pulse's frequency which leads to a
reduction in v~. However, from a simple energy conser-
vation analysis it can be shown that the pump depletion
time scales as ~2/cu2 so thL~ does not afFect the measure-
ments done earlier on in time. In Fig. 1(b) we plot Eq.
(7) along with the PIC results for a long pulse with a
Gaussian rise and fall of lp = 20c/u„and a fiat section
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FIG. 1. (a) Weighted expectation position versus time
from computer simulation. The slope of this curve is the
group velocity. (b) Long pulse group velocity versus wave

amplitude for u/ur„= 5. Data points are for simulations with

pulse length of 140e/&u„and solid line is theory.

of 100c/u„. In the simulations the laser frequency was

typically chosen to be a/u„= 5.0 in order to leemn the
computer time. Simulations were done for numerous val-

ues of pp. From Fig. 1(b) we see excellent agreement
between the theoretical expression, Eq. (7), and the PIC
result. This agreement for the long pulse group veloc-

ity demonstrates that weighting the position with E&
rather than U is accurate to order ~2/v2. Simulations
using higher values of u/a„were also carried out, and
the results were in agreement with theory.

Simulations of short pulses were also carried out to
verify the implication of Eq. (8). The results are sum-

marized in Fig. 2 where we plot the group velocity versus
the pulse width for pp ——3.0 and v/v„= 5.0. Based on
Eq. (8) we expect the group velocity of a short pulse,
i.e., lp & c/~„, to approach the linear value. This is con-
sistent with Fig. 2 where the dashed line through the
leftmost points approaches the linear vs. No simulation
points are available for smaller values of /p because there
are too few cycles within the pulse to define a single fre-

qQCQcg.
The group velocity begins to increase as the pulse

width increases. This occurs because vy decreases and
the dominant term in Eq. (8) is the numerator. Physi-

cally, the increase in vs is due to the reduction of the local
value of u„caused by the density depr~ion of the wake

and the relativistic mass increase. The maximum value

of v~, therefore, occurs when the pulse resides entirely
within the density depression. For longer pulse lengths
parts of the pulse will again reside in density compres-

sions. This leads to a reduction in the group velocity.

This scenario is seen in Fig. 2 where the group velocity
oscillates as a function of 4. The periodicity corresponds
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FIG. 2. Group velocity, e~, versus pulse width for ~ = 3.0
and u/u„= 5. Dashed line is an E~s weighted average of Eq.
(7) over the pulse shape.

to the wake's wavelength which is a function of its am-
plitude and hence a function of po. Similar curves were
obtained for other values of po.

As the pulse width increaIaMI further the group velocity
asymptotes to the long pulse expression. The amplitude
of the oscillation decreases because the wake's amplitude
decreases with pulse length. The asymptotic limit is not
that given in Eq. (7) because Gaussian shaped pulses
were used in the simulations of Fig. 2. We therefore
calculated an E&~ weighted average of Eq. (7) over the
pulse shape and this value is plotted as the horizontal
dashed line. The agreement between the calculated value
and the rightmost simulation points is excellent.

A crucial issue for the laser wake field accelerator is the
dephasing between the particles and the wake. To avoid
dephasing, v should be as close to c as possible. Previ-
ously, it has always been assumed that v = vs. How-
ever, this relationship can be altered by pulse shaping,
linear (non»near) dispersion, photon acceleration (decel-
eration), and pulse distortion. We have carried out simu-
lations to investigate the nonlinear dependence between
vs and v . The wake's phase velocity was determined
by tracking the first minimum of EII. S~ple results are
presented in Fig. 3 where v~ and vs are plotted versus
po for u/u„= 5.0 and lo = 6c/us.

We find that v = vs only for linear values of pp and
symmetric pulses. However, as shown in Fig. 3, as pp
increases vs increases while v decreases. This opposite
dependence on pn is not paradoxical because the part of
the pulse which is generating the wake need not travel at
the average velocity of the pulse. We hypothesize that the
point at the front of the pulse which generates the wake
gradually etches backward due to local pu~p depletion.

As a result, wakes excited by the leading edge of the
laser should cause the excitation point to etch backward
while wakes excited by the trailing edge of the laser
should cause the excitation point to etch forward. We
expect, therefore, v ) vs for pulses with a long rise
time and sharp fall and v ( vs for pulsea with a sharp
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FIG. 3. Wake field phase velocity v (triangles) and pulse
group velocity ve (circles) versus amplitude pp for synunet-
ricaily shaped puises and v (squares) for asymmetrically
shaped puhses.

rise and a long fall. Indeed the~ is what is observed in
simulations of such pulses as shown m

To illustrate the importance of this decrease in v for
symmetric puises in possible near term experiments, we
simulated ~/~„= 20 and po ——2.Q. This corresponds
to a 35 fs/1 pm laser pulse with I = 5 x 10~a W/cms
propagating through a plasma of n, = 4 x 10~a cm s.
We find that ps = 230 while the analytic ps = 55Q.
Therefore, the mmcimum energy gain is half of what ia

naively expected.
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