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Route to Vortex Reconnection
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The behavior of two antiparallel vortices of equal strength, moving in an ideal Auid, is studied numeri-
cally. The system is unstable and after a transient period two points of the vortices collide. On their
way to the collision the two vortices form a pyramidal structure which is independent of the initial condi-
tions. The connection process tends to follow a universal route for all kinds of initial vortex-antivortex
arrangements.

PACS numbers: 47.32.Cc, 67.40.Vs

The interaction of vortices plays a special role in the
study of ideal fluid hydrodynamics. Building on the
pioneering work by Schwarz [1] and Siggia [2], we inves-

tigated numerically the motion of two vortex contours of
equal strength moving in their induced velocity fields as-

suming ideal fluid properties. The simulations concen-
trate on the evolution in the regions of opposite vorticity.
This is of interest for the understanding of the motion of
vortex rings in general and of vortices in the vicinity of a

liquid or solid interface where the motion is determined

by the interaction with the mirror vortex. Furthermore
vortex-antivortex interactions play a key role in vortex

tangles such as in superfluid He where the reconnection
process forms, together with the local term, one of the

key ingredients of the powerful reconnecting vortex-

tangle model [3]. Finally, we discuss the implications of
our results for the so-called conservation of helicity [4]
and the possible existence of singular solutions of the
Euler equations.

The results of the calculations described in this Letter
are of general validity, but we will treat the motion of
quantized He vortices as an example because superfluid

He (with vortex strength tt 1.0X10 m /s) almost

satisfies the conditions for an ideal fluid and the vortices
are always of equal strength. We studied vortex contours
with a typical radius of 10 Jtm, and stopped the calcula-
tions whenever the distance was equal to the eff'ective

core diameter b of 0. 1 nm. According to Ting and Klein

a deviation of about 2% of the asymptotic value is to be

expected when the two vortex lines are within a distance
3b of each other [5].

The dynamical behavior was studied numerically by in-

tegrating the Biot-Savart solution for the ideal-fiuid ve-

locity Aeld

(s —r) xdsv(r)-
4tt Is —r)'

where x is the constant strength of the vortex. The in-

tegral is taken along the vortex lines. This is a well-

de6ned quantity when the vorticity is confined to a very

thin tubular region in space.
If Eq. (1) is evaluated for a point r on the vortex line it

diverges loganthmically. Following Moore and SaAman

[6] and Schwarz fl] a region of constant length b, adja-
cent to r, is excluded from the integration. The magni-
tude of b is on the order of the diameter of the core ra-
dius ao and chosen in such a way that the velocity of a
vortex ring is in agreement with experiment. The
remaining part of the integral is divided in a region near r
with a length which is typically 20% of the local radius of
curvature. This (local) contribution to the velocity can
be calculated analytically. The rest of the vortex line is

integrated numerically. The discretization point distance
is typically 20% of the local radius of curvature or
times the distance of the nearest point on the other vortex
(whichever is smaller).

Figure 1(a) represents the projection in the LV plane
of two vortex contours which initially were identical cir-
cles of 10 pm radius in the XY plane at a distance of 2

pm [Fig. 2(a), case 1]. As a result of the interaction be-

tween the two contours, as described by Schwarz fl], and

in more detail by Liu, Tavantsis, and Ting [7], the vor-

tices have developed kinks in the points where they are
close together. The 6gure is symmetric. This is obvious

since the configuration was symmetric at the start. On

the scale of Fig. 1(a) the vortices seem to be connected in

the center forming the letter "X." Therefore this point is

called the X point [Sl. In three dimensions the vortices
form the top of a pyramid with a rectangular base plane
with a typical base-line ratio of 4 to l. Figure 1(b) is a
blowup of the region near the L point. This structure has

been found before by other workers [1,2,8-10]. On this

scale the curves form two hyperboles, each with two

asymptotic lines.
The evolution of vortex contours was calculated for

several difl'erent initial conditions [Fig. 2(a)]. After a

transient period a structure develops which is the same as
the one described in Fig. 1(b). The pyramid is sytttrttetrt'c

even for asymmetric starting conditions [Fig. 2(b)l. The

angles between the asymptotic lines forming the pyramid

are given in Fig. 2(c) as functions of the ratio between

the minimum distance D of the two vortices [see Fig.
1(b)l and b. The radius of curvature at the top is

Darctan (t pi)/sin(2 p2). The values of the angles are

determined in regions where the curves are practically
straight, in fact, where the radius of curvature is 2 orders
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of magnitude larger than at the top. After the transient
period (where the angles are not well defined) the angles
turn out to follow the same D/b dependence. This means
that the geometry, presented in Fig. 1(b), is independent
of the starting conditions. This behavior is characteristic
for the self-similar behavior as described by Barenblatt
and Zel'dovich [111. Only the orientation and the posi-
tion in space of the structure are determined by the initial
conditions.

li

The dependence of the angles on D/8 can be fitted bya
inear In[In(cD/b)] relationship with c = 1.3. The inter-

vortex angle pi changes from about 135' to 115' and the
intravortex angle p2 only with a few degrees on a 25' lev-

el, while D/8 changes about 2 orders of magnitude. If
the angles would be constant the time evolution could be
described simply as a rescaling of Fig. 1(b) which would

correspond with perfect self-similarity. The geometrical
evolution is independent of the vortex strength tr, which

only determines the time scale of the process. The
characteristic time is b /a-, the characteristic length scale
is the cutoff length h.

An equal geometry implies an equal evolution with

time t. This was confirmed by the calculations (not
shown here). Near the kinks the velocities are m hre muc
arger than in the other parts of the vortex contours so

the short-term evolution is determined by the behavior
near the kinks. Figure 3 shows D and D as functions of
time for case I of Fig. 2(a). The velocities near the X

(a)

X

X-pont

(b)

FIG. 1. XY projection of two vortices, originally in the XY
plane [case I of Fig. 2(a)l, on their way to reconnection. (a)
Projection on the XY plane. On this large scale the two rings
seem to be connected in the X point. (b) Same situation as in

a), but magnified, and looking from a different angle. The two

approaching vortices form two hyperbolic curves; the asymptot-
ic lines form a pyramid. The angles p~ and p3 are the intravor-
tex angles PXS and QXR; the angles p2 and pq are the intervor-
tex angles PXQ and SXR. The minimum distance is D.
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FIG. 3. Time dependence of D and D for case 1 of Fig.
2(a). (a) The large time scale; (b) the smail time scale.

where s~ represents the position of X point, f is a scaling
factor, and cr(() a curve parametrized by the parameter

The main time dependence is determined by the scal-
ing factor f; both s~ and a(() are weakly time depen-
dent. The picture behind Eq. (2) is that the tops of the
vortex curves move towards the X point (f decreases with
time). From Eq. (2) and Eq. (I) it follows that f —t

point increase when the distance between the two vortices
decreases. The distance tends to zero in a well defined
moment to in time and at a well defined point in space:
The two vortices collide. In agreement with the results of
Siggia [2] the D -t dependence is practically linear even

just before the collision [Fig. 3(b)].
The linear D -t dependence can be understood assum-

ing that the evolution and the geometry of the vortex
lines are given by

—to [l2], so D —t —to. From the slope of about «/2n,
determined from Fig. 3(b), one obtains D = («/
2z)(t —to). In general the velocities just before the col-
lision will be very high. For D =6 the velocity
dDldt = ir/4trk In the case of quantized He vortices
this amounts to 80 m/s. However, at velocities on the or-
der of the speed of sound the assumptions underlying Eq.
(I ) are no longer satisfied.

So far the description basically holds for any two line
vortices of equal strength in ideal fluids. Also in this
respect the route to the collision is universal. However, if
D = 8= ao, one has to take the detailed properties of the
vortex core into account such as the vorticity distribution,
viscous effects, density variations (vacuum core'?), or even
quantum effects ( He). In fact the structure of the core
itself will be affected [8-IO]. Although these processes
are hard to generalize, it seems that in any case the topol-
ogy of the system of vortex contours has to change since
otherwise the evolution cannot continue beyond the mo-
ment of the collision. In the case of He it is assumed
that the process is nondissipative [I 3]. The collision is as-
sumed to be followed by a cross linking of the vortex ele-
ments. A similar disconnection occurs in other media
[8- l 0]. The fact that the geometry of the vortex struc-
ture before the collision is universal implies that the evo-
lution immediately after the collision will be universal
too.

Case 4 in Fig. 2(c) represents two linked vortex rings.
For He, assuming that initially the diameters of the
rings are 20 pm and that they are 2 pm apart, the vor-
tices will collide after 0.17 ms. Such a collision, followed
by a cross linking in the way described above, ~ould im-

ply that this system of vortex contours is subject to a to-
pological change. In general one may raise the question
of what the law of invarianee of helicity [41 contributes
to our understanding of turbulent phenomena: When the
two vortex cores do not touch the conservation is trivial
by definition, when they touch it is a meaningless quanti-
ty, and when the process is all over the helicity has
changed.

The collision process described in this Letter is related
to the (near) singular behavior of the solutions of the
Euler equations [l4]. In this Letter we assumed a finite
effective core size 8. The behavior would be really singu-
lar if 8 would tend to zero while «remains finite. Physi-
cally, this is impossible because the vortex would have
infinite energy, infinite self-velocity, and an infinite nega-
tive pressure in the center of the vortex. Mathematically,
one can consider the case where b is infinitesimally small.
In that case the collision of the vortex lines corresponds
with an intersection of two vortex lines, which can then
reconnect and continue the evolution. Ho~ever, 6' is the
scaling parameter of the phenomena, so it may be ques-
tionable to take the limit of 8 to zero, even mathematical-
ly. The most interesting and realistic cases are situations
~here x and b both tend to zero in a well-defined way
(e.g. , with tr/b constant). This is the case when a finite
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core is represented by a collection of infinitesimal vortex
filaments. It is conceivable that collisions and subsequent
reconnections can take place between individual fila-
ments. It would be most interesting to investigate wheth-

er this can be a mechanism for reconnection of classical
macroscopic vortices without viscous dissipation.

In summary we have shown that the system of two an-

tiparallel vortices of equal strength is unstable. The in-

teraction is a universal and elegant process that tends to
follow the same and well-defined route for many different
initial conditions. It ends in a collision between the two
vortices.
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