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We discuss time-dependent spatially localized solutions of the quintic complex Ginzburg-Landau
equation applicable near a weakly inverted bifurcation to traveling waves. We And that there are—in

addition to the stationary pulses reported previously —stable localized solutions that are periodic, quasi-
periodic, or even chaotic in time. An intuitive picture for the stability of thee time-dependent localized
solutions is presented and the novelty of these phenomena in comparison to localized solutions arising for
exactly integrable systems is emphasized.
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Ever since the discovery of solitons [1] there has been
considerable interest in localized solutions for spatially
extended systems. In addition to the solitons of dispersive
integrable systems [2,3), stable localized solutions have
been found to occur in a system with both dissipation and

dispersion, namely, the complex Ginzburg-Landau equa-
tion with a destabilizing cubic term and a stabilizing
quintic term [4-7], which is a generic equation describing
systems near a weakly inverted (subcritical) bifurcation
to traveling waves. These localized solutions have a fixed

shape for the modulus. They can be considered as the
analogs of the localized solitons of the nonlinear
Schrodinger equation [2,3], where the shape for the
modulus is also fixed. In contrast to solitons in complete-

ly integrable systems, the pulses found for the coupled
quintic complex Ginzburg-Landau (CGL) equations can-
not only interpenetrate each other with their size and

shape unchanged after the collision, but they can also an-
nihilate each other, depending on the values of the cross
coupling for counterpropagating waves [5,6]. Experimen-
tally, stable localized solutions in one spatial dimension

with an envelope that has fixed shape have been observed
in binary fluid convection [8-10], which is a system ex-
hibiting an inverted bifurcation.

When going from one to two spatial dimensions the sit-
uation changes drastically. While for most integrable
equations two-dimensional localized solutions are unsta-

ble, the quintic CGL equation appropriate for an aniso-

tropic two-dimensional system allows for the existence
[4,11] of stable localized two-dimensional solutions.
Their interactions, which have also been studied recently
[11],are found to show even more diff'erent possibilities,
since one has an additional parameter compared to the
one-dimensional case: the impact parameter, i.e., the
vertical distance between two localized solutions well be-

fore the collision.
While no systematic experiments have been performed

to test the predictions for anisotropic systems, recent de-

tailed experiments on binary Auid convection in a circular
container [12] reveal the existence of two-dimensional

(2D) localized objects as long transients. Whether it is

possible to get stable spatially localized 2D pulses in this

system is unknown.
It is also important to note that the stability of 1D and

2D localized solutions is not linked exclusively to non-

linearities of the polynomial type in the envelope equa-

tions. Very recently we have shown [13],that the ampli-

tude equation applicable to a dye laser with saturable ab-

sorber in the good cavity limit also allows for the ex-

istence of stable ID and 2D solutions, although the non-

linearity in the corresponding evolution equation is of the

saturation type.
Other Auid systems which exhibit subcritical behavior

are pipe and channel flow. These systems are found to
exhibit three-dimensional turbulent localized structures
which slowly spread with time —the turbulent slugs first

observed by Reynolds in 1883 in pipe Aow experiments

[14] and turbulent spots observed in plane channel Aow

[15). In addition to the turbulent slugs which slowly

spread with time, turbulent localized structures which

keep a fixed shape on average and do not decay or spread

with time have also been observed in pipe Aow [16).
These structures are referred to as turbulent puffs.

It has also been known for some time [17,18] that

chaotic localized solutions, which slowly spread with

time, exist for the quintic complex Ginzburg-Landau

equation. So an interesting question to ask is whether or

not chaotic localized solutions which keep a fixed shape

on average (i.e., do not spread or decay with time) exist

as solutions of this equation.
In this paper we show for the first time that localized

solutions, which breathe in the modulus and, in contrast

to the localized solutions reported previously [4-7], have

no analog in integrable systems, exist for the quintic CGL
equation. This breathing motion can be periodic, quasi-

periodic, or chaotic depending on the parameter values.
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FIG. I. Three-dimensional space-time (x-r) plots for the magnitude of the amplitudes for the different types of stable spatially lo-
calized states we have observed. The parameter values are Z

—O. l, v 0, y; -—l. l, P, —3.0, P; —1.0, b, 2.75, b; —I.O;
they are identical to those used in previous publications on the subject (Refs. [3-5]) except for the diffusion coefficient y, and the
fixed value of y&. (a) y, l.200 (stationary localized state). (b) y, 0.900 (periodic localized state). (c) y, 0.876 (period-24local-
ized state). (Note that only about 6 periods are shown in the plot. }(d} y, -0.873 (chaotic localized state).

We are also not aware of any experimental observations
of stable localized states of these types. These solutions
are very different from the "breathers" of the integrable
sine-Gordon equation, which simply oscillate periodically
about zero for the real field and which, in fact, are more
closely related to the solitons of the nonlinear Schro-
dinger equation, which oscillate periodically about zero
for the real and imaginary parts, although the modulus is
fixed. The solutions we observe in the quintic CGL equa-
tion oscillate for the modulus about some fixed shape.
We note that for reaction-diffusion models for two real
variables, spatially localized solutions that breathe pe-
riodically have been reported [l9,20]. However, these lo-
calized solutions, which arise as the consequence of a del-
icate balance between the diA'usivities and the ratio of re-
action rates, are very diferent in character and result
from a very diAerent mechanism than the localized states
studied in this paper.

The equation ee study is

& +~&.-z&+ y~..-Iil~ I'~ -~l~l4~,
where A is a sloWly varying complex amplitude and the

coefficients (except for the group velocity v) are in gen-
eral complex, i.e., of the form z z, +iz; The co.efficient

g may be taken as real, since the imaginary part can be
transformed away with a simple transformation. Also v

may be taken as zero by transforming into a moving
frame of references. We note, however, that this trans-
formation is no longer straightforward when the influence
of noise is considered [2l]. We take g (0 and P, (0 so
that the system is subcritical and take 8, & 0 to guarantee
saturation. In writing down Eq. (I) we have discarded
nonlinear gradient terms [6,22,23].

Figure l (a) shows a space-time plot of the modulus for
parameter values for which the modulus is stationary.
This state was created by perturbing the state A 0 with
a Gaussian of suScient amplitude. If the amplitude is
too small the solution damps to zero (since the system is
subcritical). In the asymptotic time limit the system set-
tles to the state sho~n. We note that, even though the
modulus is stationary, the real and imaginary parts of A
oscillate periodically about A 0. There are two factors
which are responsible for the stability of this solution.
Gne is that there are two basins of attraction for spatially
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FIG. 2. The time series in the asymptotic regime is shown for
the modulus in the quasiperiodic and the chaotic states. The
parameters are as in Fig. 1. The time series was taken at
x 79.8. (a} Quasiperiodic localized state: y, -0.880. (b)
Chaotic localized state: y, 0.873.

FIG. 3. The separation ( in the asymptotic regime (after ini-

tial transients have died out) is shown for the quasiperiodic and
the chaotic states. The parameters are as in Fig. 2. (a) Quasi-
periodic localized state: y, 0.880. (b) Chaotic localized state:
y, =0.873.

uniform solutions (assuming g &0, P, &0, and b, )0).
Therefore it is possible to have parts of the solution lying
in one basin of attraction and the surrounding parts of
the solution lying in the basin of attraction A =0, with an
interface between them [18l. The second is due to a non-

variational effect [4j. If the coefficients of the equation
are real, the system is purely dissipative, a Liapunov
functional exists, and there are two potential wells, as-
suming g & 0, P & 0, and b )0. In this case, at best there
can be a neutrally stable solution with part of the system
lying in one potential well surrounded by the rest of the
solution lying in the potential well at zero. Only if there
is in addition dispersion can stable localized solutions ex-
ist for a parameter regime of nonzero measure.

We now gradually decrease y„(i.e., decrease the dissi-

pation) compared to its value in Fig. 1(a) (y„=1.20)
keeping the other parameter values fixed. As y, is de-
creased, the solution becomes wider. At some point (y,
=1.091) the stationary localized solution becomes unsta-

ble, and the system makes a continuous transition to a
time-periodic state. (By continuous we mean that no hys-

teresis was observed at the transition when changing y,
by 10 .) Figure 1(b) shows a space-time plot of the
modulus for a stable periodic state (y, =0.9). By stable
we mean that the solution lies on the periodic attractor.
As can be seen from the figure, the modulus breathes in a
periodic fashion with time. More specifically, the breath-
ing motion can be described as follows. As time pro-
gresses, the solution increases in width. At some time in-

dentations occur symmetrically on both sides of the solu-

tion. These indentations grow and travel outward, form-

ing wings which then decrease in amplitude and eventual-

ly damp. The reason the wings damp is that they are
suSciently small in amplitude and that the system is sub-

critical.
For values of y, between y, =0.885 and y, =0.880, we

find that the asymptotic state can depend on the initial
conditions (e.g. , Gaussian or final state of previous run)

as well as on the magnitude and sign of the step size
made in y;. Among the states observed are period-1, -3,
-6, -12, and -24 states as well as quasiperiodic states. In

Fig. 1(c) we give as an example a space-time plot of a
stable period-24 localized solution. It is seen that the be-

havior is very similar to that of the periodic state —with

breathing and damping of side wings —except that the
motion is period-24 in time. Figure 2(a) shows a plot of
a time series of a quasiperiodic state at a fixed spatial
point for the asymptotic state for y, =0.880. It is seen

that the motion is not periodic. In order to demonstrate
that the motion is not chaotic in time, the separation be-

tween two nearby trajectories is calculated [17). Figure
3(a) shows a plot of the logarithm of the separation.
Since the average separation is constant (i.e., the largest
Liapunov exponent is zero), the system is not chaotic.
Since the motion is neither stationary nor periodic and

also not chaotic, it is quasiperiodic. Again by stable we

mean that this solution lies on the quasiperiodic attractor.
As y, is further decreased the system makes a transi-

tion to a stable localized chaotic state (y, =0.8745). By
stable we mean that the solution lies on the chaotic at-
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tractor (we performed our runs for 300000 iterations
with a time step of 0.01). We note that no hysteresis was

observed at the chaotic transition when changing y, by
5 x 10 . Figure 2(b) shows a time series for y, =0.873
at a fixed spatial point. It is seen that the time series is

indeed irregular. In order to determine whether the
motion is chaotic, the logarithm of the separation be-
tween nearby trajectories is plotted as a function of time
[see Fig. 3(b)]. It is seen that, since the trajectories
separate exponentially on the average in time (i.e., the
largest Liapunov exponent is positive), the motion is

indeed chaotic. Figure 1(d) shows a space-time plot of
this stable chaotic localized solution for large times.
Again it is seen that there are some similarities with the
periodic states —breathing and damping of side wings—except that, in addition to the motion being chaotic in

time, the solution is no longer spatially symmetric. Ini-
tially the chaotic solution was oscillating symmetrically,
but because the state is chaotic (i.e., nearby states
separate exponentially on the average), the slight asym-
metry due to roundoff error was exponentially amplified
causing the solution to eventually become asymmetric as
seen in the figure. This symmetry breaking process can
be accelerated by adding noise to the system.

As long as the side wings are sufficiently small, they
will damp and the solution will remain localized in time.
As y, is further decreased the solution no longer remains
localized, but fills in. This occurs at y, =0.871. The
reason the solution spreads and fills in for these parame-
ter values is that the amplitude of the side wings that
form are sometimes large enough to grow instead of
damp. Therefore these side wings will grow and cause
the solution to spread and fill in. This spreading mecha-
nism is similar to what occurs in the spreading chaotic lo-
calized solutions studied previously [17,18].

As is well known, a route to chaos from stationary via
periodic and quasiperiodic states has been previously dis-
cussed for systems without spatial degrees of freedom
[24]. Here we have shown for the first time that such a
route to chaos can occur in a spatially inhomogeneous
pattern and, in particular, for a pattern which is spatially
localized.

In conclusion, we have found that stable spatially local-
ized periodic, quasiperiodic, and chaotic solutions exist
for the quintic complex Ginzburg-Landau equation. In
contrast to the stationary solutions for this equation re-
ported previously [4-6], which have an analog in the soli-
tons of integrable systems, the time-dependent solutions
which we studied here have no analog in integrable sys-
tems. Likely candidates to find such solutions experimen-
tally appear to be binary fluid convection and electrocon-
vection in nematic liquid crystals, both of which exhibit a
subcritical bifurcation to traveling waves [8,9,25]. It will
be very interesting to see whether such localized solutions

can be found in experiments.
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