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It is shown that the evolution of the density perturbations during certain eras of substantial en-
tropy generation in the Universe can be described using the Kardar-Parisi-Zhang equation. There-
fore, the influence on cosmological structure formation by stochastic forces arising from various
dissipations can be studied through the universal characteristics of surface growth in 3 + 1 dimen-
sions. We identify eras of strong stochastic fluctuations and describe dynamically how these other
dissipative sources of noise, besides initial (inflationary) quantum fluctuations, generate seeds of
density perturbation with power law spectrum, including the Harrison-Zeldovich spectrum.
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In the last few years, significant progress has been
made in understanding the dynamics of growing a rough
or structural surface from an initially flat surface by
random fluctuation [1]. Many structure formations in
physics have been understood by studying the scaling
properties of their growth patterns. Central to these
studies has been the characterization of universal prop-
erties associated with systems of diverse physical at-
tributes. To guide in these investigations, a major break-
through has been the development of systematic analytic
treatments inspired by scaling and renormalization group
theory [2]. This treatment, aimed at studying the spatial
and temporal behavior of structural growth, has revealed
that the universal scaling properties come from the non-
linear and stochastic terms in the dynamical equation.

In principle, the structure formation in the Universe
can also be classified as the phenomena of structural
“surface” growth. Big-bang cosmology essentially tries
to explain how an initially homogeneous mass distribu-
tion evolved into its present inhomogeneous state. In the
language of the spacetime metric, it explains how an ini-
tially flat or smooth three-dimensional surface described
by the Robertson-Walker metric evolved into a wrinkled
one. The analogy to surface formation takes root by as-
sociating the initial mass distribution with a flat three-
dimensional surface and its subsequent structure forma-
tion as that of surface roughening. This analogy gains
interest by noting that cosmological structure also shows
scaling in, for example, two-point correlation functions
of galaxies, clusters of galaxies, and quasars, all of which
behave as r~7 with v ~ 1.8 up to present day scales of
about 300 Mpc.

In the standard inflationary model, it is assumed that
the seeds of the density perturbation are produced by the
quantum noise of scalar fields during the inflation era [3].
In this model scaling structure is therefore explained as
due to white noise seeds from this quantum fluctuation.
However, besides quantum fluctuations, there are also
time periods when stochastic fluctuations are large and
which can, as we will see, lead to scaling seeds. Although
this connection of stochastic fluctuations to scaling makes
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it of special interest, it should be recalled that quite gen-
erally dissipations must be accompanied by fluctuations
or stochastic forces. In cosmology much work has con-
centrated on the effects of dissipation, for instance during
the reheating period. This dissipation by the damping of
scalar fields must also imply fluctuations of it, which pre-
empts the investigation in this paper.

Analytic studies have shown that scaling behavior is
common to systems that obey nonlinear dynamical equa-
tions with also a stochastic driving term [1]. The struc-
ture formation in the Universe, in particular at subhori-
zon scales, is just such a system. Therefore, it is worth-
while to study the models of cosmological structure for-
mation from the point view of the universal dynamics
that governs structural surface growth. In this paper we
will quantify the analogies drawn above and then focus
on the influence of stochastic fluctuations on structure
formation. We clarify that it is already known that struc-
ture formation was predominately at superhorizon scales
during the inflation era and so must be treated by general
relativity [4]. However, we will show that in specific peri-
ods when dissipation becomes significant, the influence of
fluctuation to structure formation is of subhorizon scales,
and can be described by a nonrelativistic equation.

(1) The standard model(s) of cosmic structure for-
mation (e.g., inflation theory) assumes that the initial
spectrum of density perturbation was given by the vac-
uum quantum fluctuations and inflationary expansion,
and that the subsequent evolution of clustering was de-
terministic, i.e., it obeyed a dynamical equation without
a noise term. This is equivalent to assuming that either
(a) no noise sources existed after the inflation era or (b)
the influence of post-inflation noise on structure forma-
tion was negligible.

Obviously assumption (a) is not true, because dissipa-
tion (or processes of approaching locally thermal equi-
librium) was essential in the eras of cosmic entropy gen-
eration, and generally such dissipative processes would
lead to a stochastic force F (fluctuation-dissipation the-
orem). In the standard model, these dissipative eras at
least included reheating of inflation, baryongenesis, non-
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thermal equilibrium decoupling of particles, and post-
inflation phase transitions. Moreover, the actions given
by turbulencelike perturbations and explosions were also
essentially stochastic. One can expect that in such eras
cosmic matter was influenced significantly by the stochas-
tic fluctuation force F.

Turning to assumption (b), it is correct if the nonlinear
terms in the dynamical equation can be neglected. With-
out the nonlinear term, the noise force F will not change
the scenario of clustering as given by the linear approxi-
mation, but only contributes to a statistical error in the
result. However, the influence of noise will no longer be
trivial, as we shall show, if nonlinear corrections to the
dynamical equation are considered.

As an example, let us consider the era of reheating after
inflation, during which there was out-of-equilibrium de-
cay of massive, nonrelativistic particles. This process can
be described as “friction”-like coupling in the dynamical
equation [1]. Since by this time period causality forbids
any new formation of fluctuations at superhorizon scales,
the only fluctuations raised by the entropy generation of
reheating are of subhorizon scales. Moreover, during the
period of coherent oscillation, as the scalar field damps,
the Universe becomes matter dominated by these nonrel-
ativistic particles. Therefore, in this time interval, the in-
fluence of stochastic fluctuations on structure formation
can be described by the nonrelativistic hydrodynamical
equation of structure growth in an expanding universe.
In linear approximation, the momentum equation is given

by (3]

. . 9
%+%v+%(r-V)v+§i—Vp+V¢=0, (1)
where the density p, peculiar velocity v, and gravita-
tional potential ¢ are the perturbations to the basic-
state (smooth) solutions po, vo, ¢o. R(t) is the cosmic
scale factor and v, is the speed of sound. A straightfor-
ward examination of the linearized equations shows that
only the vorticity free modes can be amplified by gravi-
tational instability in an expanding universe. Therefore,
we will only consider those solutions satisfying the con-
straint V x v = 0. In this case, one can define a velocity
potential ¥ by

v =-Vy. (2)

On the other hand, it is well known that in linear ap-
proximation the velocity v(r,t) is proportional to the
gravitational force produced by the surrounding density
perturbation. Thus we have the local relation

p=—fV-v, (3)

where f = 4mwpo/Hp in a flat (k = 0) universe. From
Egs. (2) and (3), one has p = fV2¢. Therefore, 9 is
proportional to the gravitational potential by the relation
¢ = 4wrGf4y, so that v = —(4nGf)~1V¢. Substituting

Egs. (2) and (3) into Eq. (1), one has

: 2

%+%v+%(r-V)v=%fV2v+47rva. (4)
This equation is similar to the Langevin equation but
without a stochastic force. The first term on the right-
hand side of Eq. (4) describes relaxation of the structure
by diffusion. The second term formally corresponds to
the viscosity term in the Langevin equation, but here
the sign is negative, because self-gravitation leads to ac-
celeration, not deceleration of the clustering matter.

As discussed above, during the eras of dissipation in
the Universe, the dynamical equation (4) should include
a stochastic force or noise term, F, on the right side.
Then Eq. (4) finally has the form of a Langevin-like
equation. The stochastic force acting on the vorticity-
free perturbation should be

F = Vn(x,t), (5)

where the noise 7(x, t) satisfies (n(x,t)) = 0. If the noise
is Gaussian, we have (n(x, t)n(x, t)) = 2Dé3(x — x')é(t —
t'), where D is the mean square variance of the noise.
More generally, the spatial-temporal Fourier transform
of n(x,t) satisfies

(n(k,w)n(k', o)) = 2Dk~ w20 6(k + K)8(w +w')
(6)

where for the case of Gaussian noise y = 6 = 0.

At linear approximation as we are considering in Eq.
(4), the solution will essentially not be affected by the
stochastic force F, because the noise term can be elimi-
nated from the dynamical equation upon averaging, re-
gardless of the value of D. As such, the noise term simply
leads to an increase of statistical variance in the linear
results.

However, adding nonlinear corrections to Eq. (4) will
substantially change this scenario. The lowest order non-
linear correction of Eq. (4) is given by the Euler term
(v - V)v. Including this and the noise term, Eq. (4) has
the modified form

av R R
—é?-kﬁv—}—ﬁ(r-V)v—%—(v‘V)v

2
= z—’fv% +4rGfv+F . (7)
0

Strictly speaking, we should also include the dissipative
term corresponding to F in Eq. (7). However, this linear
term will not affect the main results discussed below.
Equation (7) governs the evolution of matter pertur-
bation during the beginning period of reheating when
the scalar field is undergoing coherent oscillations. Obvi-
ously, Eq. (7) is not limited to this period of reheating in
the early Universe, but generally describes the behavior
of structure formation in any era when (1) dissipation is
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significant, and (2) the Universe is dominated by nonrel-
ativistic particles. Other possible examples, besides the
reheating case, are late-time phase transitions [5] and
collision or merging of galaxies.

If the interaction causing the stochastic force is weaker
than self-gravitation, and/or its time scale is comparable
to or even longer than Hubble expansion, the noise term
will be less important. One can call this the case of weak
noise. For instance, the stochastic force related to the
bulk viscosity at last scattering surface [6] is negligible,
because the entropy per baryon was very large at the era
of last scattering.

However, for the eras in which the main or a compara-
ble part of cosmic entropy was generated, as in the part of
the reheating period discussed above, dissipation would
have been crucial, even dominant in the evolution of the
Universe [7]. Therefore the relevant stochastic force F
would have been stronger than self-gravitation and its
time scale less than that of Hubble expansion. In such
periods, one can neglect the cosmic expansion [R(t)] and
self-gravitation (4rGfv) terms. Equation (7) then be-
comes the Burgers’ equation [8] with stochastic force

2
%+(v-V)v=Z—ZfV2V+F. (8)
It has already been recognized that the nonlinear evolu-
tion of cosmic density inhomogeneities can be approxi-
mately treated by the Burgers’ equation [9]. This work
concentrated on the the formation of pancakes and fila-
ments, and did not incorporate stochastic forces, which
are central to our considerations.

Using Egs. (3) and (8) one finds the equation for ¢ to
be

90 _ 9%+ 2(V9) + )| ©)

ot 2
where f' = (v2/po) f. Both the above equations are vari-
ants of the so-called Kardar-Parisi-Zhang (KPZ) equa-
tion [2], which has been widely studied as a dynamical
equation for describing universal behavior of fractal sur-
face growth under stochastic force. From our consider-
ations we see that the influence of stochastic forces on
cosmological clustering also belongs, under certain ap-
proximations, to the dynamics given by the KPZ equa-
tion. If one makes an analogy with the theory of surface
growth, one finds that the gravitational potential ¢ of
cosmic matter corresponds to the height of the surface.
This means that the evolution of the gravitational po-
tential undergoing stochastic fluctuation is analogous to
the problem of d = 3 + 1 surface growth, i.e., a “surface”
growing on a three-dimensional substratum.

(2) Equations (8) and (9) show that noises in strong
dissipation eras would input the corresponding scaling
seeds into the mass distribution, which subsequently
would then be amplified by gravitational instability in
the expanding universe. As such, stochastic forces from
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strong dissipation eras would most likely leave some sig-
natures in today’s clustering. In order to illustrate the
influence of the noise on the clustering, let us turn to
the correlation functions. The seeds generated by noise
normally are scaling with correlation functions going as

<¢(X, t)¢(xlvt)> Nl x—x' |a ’ (10)

so that the two-point correlation function of density is
then

&(r) = (p(x,t)p(x’,£)) ~ 77,
where y =4 — a.

The index o depends on the spectrum of the noise in
Eq. (6). Unfortunately, for d = 3 + 1, few firm rela-
tionships between (x, ) and « are available. However,
one can find the possible range of a from the following
universal relation [1]:

a=48/(8+1),

where 3 is the index for the time behavior of the corre-
lation function of ¢(x,t) at a given x — x’,

(p(x,t)p(x' 1)) ~t2# .

If we examine the case of perturbations which grow faster
than the gravitational instability, it would require 3 to be
larger than 1/2 in the radiation era or 2/3 in the matter
era. This would mean that we have, respectively,

(11)

(12)

(13)

0<vy<266o0r24, (14)
thus indicating how the effects of noise, or more gener-
ally the dynamics embodied in Eq. (7), contribute non-
trivially to structure formation. It also means the basic
assumptions (a) and (b), implicit to the standard (infla-
tion) model, are not necessarily true.

One can further quantify these results by using the fol-
lowing general relation, obtained by perturbative meth-
ods in [10],

a=(dx —2d+80+6)/(20+3) , (15)

which is valid for 0 < x < 2 and 0 < 6 < 0.25. Within
the limits that one accepts this perturbative result to
give a semiquantitative guide, one can obtain relations
between a and the spectrum of spatial (x) and temporal
(6) noise. For example, one can obtain the solution in the
near proximity of the observed two-point density corre-
lation function o = 2.3 (y =~ 1.8) for x = 2 and 6 = 1/6.
This is a suggestive example since it has the following
interpretation. From Egs. (3) and (5) observe that V27
is proportional to the stochastic force term acting on the
density fluctuation p, so that this solution corresponds
to a white noise fluctuation on the density but with a
temporal correlation. The latter should not be surpris-
ing since dissipative eras are of finite temporal extent and
so would reflect on the temporal noise correlation. The



VOLUME 72, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JANUARY 1994

above demonstrates one way that a strong white noise in
the early Universe would be able to generate an initial
perturbation which along with possible further modifica-
tions by gravitational instability could leave signatures in
present observation. Also contained within the solutions
of (15) is @ = 0, which corresponds to the Harrison-
Zeldovich spectrum. Finally, Eq. (15) tentatively shows
that a increases with x. As a reasonable extrapolation,
assuming that such a trend holds for x >> 2, it is sug-
gestive that such strong, turbulencelike noise may not be
consistent with observation. Of course, we should keep
in mind that Eq. (15) is a perturbative result, so that
this deduction is not rigorous and also may not be unique
since nonperturbative results could exist.

Standard model cosmology has eras, such as during
reheating, when stochastic fluctuations given by cosmic
phase transitions and other nonthermal equilibrium pro-
cesses are significant. During such times, their effect may
play a non-negligible role in structure formation. The
last conclusion was also reached by Luo and Schramm
[11] based on observational data indicating scale-free dis-
tributions of galaxy clusters. They concluded the need
for incorporating a fractal structure generation mecha-
nism into standard big-bang cosmology. Although, as
pointed out by Peebles [12], a pure fractal contradicts the
observed large scale angular correlation function, their
considerations were restricted to subhorizon scales of or-
der 300 Mpc in the present day Universe. They ex-
plained the mechanism based on an aggregate growth
process and concluded that fractal growth originates from
two-dimensional sheetlike objects. However, as we have
shown, the dynamical mechanism is rather more general
and is governed by the KPZ equation, which is not neces-
sarily restrictive to two-dimensional growth phenomenon
but rather to surface growth in higher dimensions also.
Within the framework of the formalism presented here,
we learn that the universal characteristics of rough sur-
face growth, such as the relationship between the noise
spectrum and the index of the two-point correlation func-

tion, can be used for guidance in developing models of
structure formation in the Universe. This provides a two-
step approach for checking models in particle cosmology:
(a) testing the standard model by calculating the con-
tributions of stochastic fluctuations related to various
dissipations in the Universe; (b) testing particle physics
models which may give rise to stochastic forces in the
early Universe by assuming the correctness of the stan-
dard model.
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