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Stability of Non-Abelian Black Holes and Catastrophe Theory
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Two types of self-gravitating particle solutions found in several theories with non-Abelian fields
are smoothly connected by a family of nontrivial black holes. There exists a maximum point of
the black hole entropy where the stability of solutions changes. This criterion is universal, and the
changes in stability follow from a catastrophe-theoretic analysis of the potential function defined by
black hole entropy.

PACS numbers: 04.70.Dy, 95.30.Tg

After Bartnik and McKinnon discovered a nontrivial
particlelike structure (BM particle) in the Einstein-Yang-
Mills theory [1], a variety of self-gravitating structures
with non-Abelian fields have been found. Besides the
BM particle, researches have discovered the colored black
hole [2], the Skyrmion [3,4], or the Skyrme black hole

[4—6], the monopole [?—9], or the black hole in monopole
(monopole black hole) [8—10], the particle solution with
massive Proca field, or the Proca black hole [11],and the
sphaleron [12,11] or sphaleron black holes,

One of the most important questions about these self-

gravitating non-Abelian structures is, are they stable?
The BM particle and the colored black hole are unsta-
ble against radial perturbations, while both the Skyrmion
and the monopole and the corresponding black hole solu-

tions are stable. The sphaleron and its black hole solution

may be unstable because of their topological structure.
Are there any common properties in those non-Abelian
structures? Can we find any universal understanding for

them? Answering these questions is the main purpose of
the present paper. We will soon show that there is a uni-

versal picture for self-gravitating non-Abelian structures
that incorporates these black hole solutions, and that ac-
counts for their stability properties via a catastrophe-

theoretic analysis of the black hole entropy, with 8 (=the
area of event horizon/4) regarded as a potential function.

We have reanalyzed five models, which are listed in

Table I. Some known results concerning these models are
also summarized in the table. Remarkably, except for

the colored black hole and the monopole black hole, all

solutions share the following properties [13]: (1) There
are two particlelike solutions. One corresponds to the
known particle solution without gravity [3,12], and the
other has properties similar to those of the BM particle

[1,4,11]. (2) Two branches of black hole solutions, which

leave from two particles, bifurcate at some critical hori-

zon radius [5,11]. Beyond this critical point, where the
black hole has a maximum mass and a maximum entropy,
there exists no nontrivial structure. The upper branch in

Fig. 1 has larger entropy than that of the lower branch.
Hence, we shall call each of them high- and low-entropy

branches, respectively. The low-entropy branch is similar

to the colored black hole solution, and the high-entropy

branch approaches the Schwarzschild black hole in the
"low energy" limit [6]. Here, low energy means that the
mass of the particle is much smaller than the Planck mass

mp = 0 t/z. It is realized in the limit as p, ~ 0, where p
is a mass of the relevant non-Abelian field, e.g. , p = 9@0

TABLE I. The properties of five models including non-Abelian fields. See text about the meaning of "stable" for the
sphaleron black hole. BFM particle means one of two nontrivial solutions found in [9], which is more massive than the usual

monopole. Cy denotes how many times the sign of the specific heat changes in the branch. The Reissner-Nordstrom black

holes in Einstein-Maxwell and Einstein-Yang-Mills-Higgs systems are listed as references. In order to define parameters in the
theories such as a gauge coupling constant g, we show the Lagrangians of non-Abelian fields and the potentials of Higgs fields.

Black holes

1. Colored BH

2. Skyrme BH

3. Proca BH

4. Sphaleron BH

5. Monopole BH

Reissner
-Nordstrom BH

Non-Abelian fields

Yang-Mills field [SU(2)]
TrF, F = dA+ gA A A

Skyrme field [SU(2}xSU(2)]
TrF —

4 fs TrA, F = —dA
S

Massive Yang-Mills (Proca) field
—

4 [4TrF —gp, TrA ]
Yang-Mills field [SU(2}]
-~1.T F'
Yang-Mills field [SU(2)]

Electromagnetic field [U(1)]
Yang-Mills field [SU{2}]

Higgs fields

(complex doublet)
-x(e to —e', )'
(real triplet)

4 (@2 @2)2

(real triplet)

BM particle

Skyrmion
BM type

Procaon
BM type
Sphale ron
BM type
Monopole
[BFM particle]

1 (unstable)

1 (stable}
1 (unstable)

1 (stable)
1 {unstable)
1 ("stable" }
1 (unstable)
1 {stable)
[1 (unstable)]
1 {stable)
1 (stable or unstable)

m ( at

finite {high)
finite (low)

finite (high)
finite (low)
finite {high)
finite (low)
finite (high)
[finite (low)]
m ( oo
mgoo

0
1 or 3

0
1or3
0
1 or 3
0
[0]
1
1

Particles Black hole modes Mass {entropy} t g
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FIG. 1. The mass-horizon radius diagrams for (a) the Skyrme black hole with fs/mp = (i) 0.01, (ii) 0.02, and (iii) 0.03;
(b) the Proca black hole with p/gm~= (i) 0.05, (ii) 0.10, and (iii) 0.15; and (c) the sphaieron black hole with A = 0.125 and
@p/m~= (i) 0.1, (ii) 0.2, and (iii) 0.3. C is a cusp, where the black hole has a maximum entropy. Beyond its entropy there is
no non-Abeiian black hole. The Schwarzschiid black hole (the dot-dashed line) and the colored black hole (the dotted line) are
also shown as references.

(the vacuum expectation value of the Higgs field) for the
Einstein-Yang-Mills-Higgs system, or p = gs fs (two cou-
pling constants of Skyrme field) for the Einstein-Skyrme
system. (Note that gs2 = 4zgz in our notation. ) On
the other hand, in the limit of "high energy, " no solu-
tion exists. It disappears around p mp/g. (3) The
high-entropy branch is stable (except for the sphaleron
solution, but see below), while the low-entropy branch
is unstable [4,5,14,15]. (4) The specific heat in the high-
entropy branch is always negative, while the specific heat
in the low-entropy branch changes its sign a few times [6].

In order to obtain a universal picture with the prop-
erties (1)—(4) above, we have reanalyzed the five models
listed in Table I and found the following new results [16]:
(5) Fixing the horizon radius r~, there are two black
hole solutions with different masses. Those two branches
are bifurcated at some critical radius In the m. ass-radius
(M rH) plan-e, the solution curve has a cusp at this crit-
ical point C (see Fig. 1). The stability changes at this
cusp; that is, the high-entropy branch is stable while the
low-entropy one is unstable against radial perturbations.
(6) If we draw the solution curve in the three dimensional
space of the mass M, the entropy of the black hole S, and
the field strength at the horizon B~ —= (TrF ) / ]h„;„„,
it becomes smooth (see Fig. 2). Here, the expression
BH has been used because only the radial component of
the magnetic part of the non-Abelian field is finite at the
horizon. Only the projection onto the M-S plane (and
then onto the M rH plane) -provides a cusp. The cusp,
at which the stability changes, corresponds to a turning
point in the three dimensional picture, where the black
hole entropy takes the maximum value.

The appearance of a cusp as a critical point of stability
is often discussed in catastrophe theory [17,18] and in its
application to astrophysics [19,20]. In the present case, if
we regard S, M, and BH as a potential function, a control
parameter, and a generalized coordinate, respectively, we
may apply catastrophe theory to the present stability
problem as follows. In catastrophe theory, solutions are

regarded as extremal points on the Whitney surface, S =
S(M, BH), when the control parameter M is fixed. If a
solution is a maximal point, then that solution is stable
because its entropy is maximal. On the other hand, if it
is a minimal point, then it is unstable. At the maximum
entropy, the solution turns out to be an inflection point,
beyond which there is no extremal point; i.e., there is no
black hole solution [16].

We may wonder what happens with the sphaleron
black hole, because both its high- and low-entropy
branches are unstable for topological reasons. Is this
consistent with our interpretation of stability via catas-
trophe theory? When we discuss stability, in general
there are many modes to be investigated. A general ar-
gument about the instability of the sphaleron is based
on a topological analysis [13],which does not choose any
specific mode. On the other hand, when we discuss sta-
bility change using catastrophe theory, we focus on some

FIG. 2. The solution curve in the three dimensional space
of (M, BH, 8) and its projections onto each two dimensional
plane for a Skyrme black hole with fs/m~ = 0.02. The cusp
C in M-8 plane is a critical point for stability. For the 6xed
control parameter M, two solutions are at extremal points
on the Whitney surface; the maximal one is stable, while the
minimal one is unstable. Beyond the critical point C, there
is no extremal point, i.e., no non-Abelian black hole.
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specific mode. For the sphaleron without gravity, the sta-
bility analysis with a spherically symmetric ansatz was
done [21]. It was explicitly shown that there is only one
unstable mode. Although no analysis has been made,
so far, for the case of the gravitating sphaleron or the
sphaleron black hole, we guess that it may be stable in
the high-entropy branch against radial perturbations ex-

cept for one unstable mode corresponding to the above.
In the low-entropy branch, some of the stable modes be-
come unstable. The sphaleron black hole picks up at
least one more unstable mode beyond the critical point.
In this sense, we argue that the high-entropy branch is
"stable" while the low-entropy one is unstable. If this
is so, then catastrophe theory accounts correctly for the
stability of black holes even in the sphaleronic case.

From the above discussion, we see that we can classify
non-Abelian black holes into two types, (A) and (B):

(A) High-entropy "neutral" types: The high-entropy
branch is "stable. " The field strength at the horizon (BH)
is still small as well as the black hole is globally neutral.
The black hole is approximately neutral. We may adopt
the following picture for this type of black hole. The non-

Abelian structure may be approximated as a uniform vac-
uum energy density p~, with a sphere whose radius is the
Compton wavelength of the massive non-Abelian field.
As for the black hole solution, the horizon must exist in
the region of uniform vacuum energy. Otherwise, non-

trivial non-Abelian structure is swallowed by the black
hole, resulting in a trivial Schwarzschild solution. This
explains why there is an upper bound on the mass or hori-
zon radius for this nontrivial solution. From our picture,
the high-entropy neutral black hole near the horizon is

approximated by the Schwarzschild —de Sitter spacetime
with the cosmological constant=8mGp„. In the limit

of low energy, the solution approaches the Schwarzschild
black hole. The negative specific heat is also consistent
with that of the Schwarzschild or Schwarzschild —de Sit-
ter spacetime. The self-gravitating particle approaches
the known particle solution in a Minkowski background

[3,12]. Such a particle can exist without gravity.

(B) Low-entropy "locally charged" types: The low-

entropy branch is unstable. The structure of this type
of black hole is quite similar to the colored black hole.

Although the black hole is globally neutral, BH does not
vanish at the horizon. Its value is rather large. An ef-

fective charge appears near the black hole horizon. Fur-
thermore, in the low energy limit, the solution approaches

the colored black hole [4,6]. The nontrivial structure in

this case is due to the kinetic term of the non-Abelian

gauge field, TrF~. Gravity must play an essential role in

this nontrivial structure, because the BM particle can-
not exist without gravity and the mass scale is about
mBM rnJ /g, which is almost independent of p (or
40, fg) Just as we foun. d strange behavior in the specific
heat of a colored black hole [6], we find changes of its sign
a few times (see Table I).

As for the excited state, i.e., higher-node solutions, we

find that a similar cusp exists [6,16]. We expect that
when the solution goes beyond this cusp (the maximum

entropy point), another instability will appear. Since the
colored black hole has n unstable modes for an n-node
solution [14,22], we expect that the high-entropy branch
of n n-ode solutions has (n —1) unstable modes while the
low-entropy branch has n unstable modes.

We have, so far, discussed all known non-Abelian struc-
tures except for the monopole black hole and the colored
black hole, and have presented a universal picture. Al-

though the colored black hole does not always have all

the properties we have discussed above, it should be in-

cluded in our universal picture, because the colored black
hole and the Schwarzschild black hole are obtained ex-

actly as low energy limits of the low- and high-entropy
branches, respectively. The only exceptional solution is

the monopole or the monopole black hole, which is glob-

ally charged.
It should be stressed, however, that although the

monopole black hole has difFerent properties from types

(A) and (B) above and shows more complicated behav-

iors [8—10], the catastrophe theory is again applied to the
stability analysis [23]. Depending on the parameters g,
A, and Oo in the Einstein-Yang-Mills-Higgs system, there
seem to be the following two cases [8—10,23]:

(I) The mass of the monopole black hole increases

monotonically as entropy increases and the solution even-

tually reaches a bifurcation point 8 with the Reissner-

Nordstrom (RN) black hole branch. No cusp appears.
The monopole black hole is stable, while the RN solution

becomes unstable beyond this bifurcation point 8 [8].
(II) For some range of parameters, the solution curve of

the monopole black holes has a cusp C in the M-8 plane

[10,23], where the black hole has the maximum entropy.
There are two solutions with the same horizon radius (the
same entropy) but difFerent masses just as with the other

type of nontrivial black holes. When the radius gets small

in the second (low-entropy) branch, the solution either

may merge to the RN black hole at a bifurcation point 8
or might reach another particle solution (BFM particle

[9]). We guess that the second low-entropy branch is

unstable while the first high-entropy branch is stable (see

[10]). The RN black hole is stable before the bifurcation

point 8, but it becomes unstable beyond B.
All these behaviors (I) and (II), including the stability

of the RN black hole, follow easily from catastrophe the-

ory, if the entropy is regarded as the potential function

[24]. The entropy 8 with a fixed mass M is maximal for

the stable branch but becomes minimal for the unstable

branch [23].
In this Letter, we have reanalyzed the known non-

Abelian black holes, as well as the corresponding self-

gravitating particlelike solutions. We find a universal pic-
ture: The globally neutral solutions are classified into two

types depending on whether they are almost neutral or
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locally charged. The neutral type (high-entropy branch)
is similar to the Schwarzschild —de Sitter solution and
stable (see the previous discussion for sphaleron black
holes). The locally charged type (low-entropy branch) is
like the colored black hole and unstable. Its specific heat
changes sign a few times with respect to the mass. When
those two types coincide, the entropy becomes maximum.
Catastrophe thxzxry can be applied to analyze the stabil-
ity of these black holes. One stable mode in the high-
entropy branch becomes unstable beyond the bifurcation
point. This may be true also for the sphaleron black hole.
As for the globally charged black hole (monopole black
hole), we can also apply catastrophe theory to the sta-
bility analysis, although the behavior of the solutions is
more complicated.
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