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The Physical Hamiltonian in Nonperturbative Quantum Gravity

Carlo Rovelli '* and Lec Smolin
'Department of Physics. University of Pittsburgh, Pittsburgh, Pennsylvania l5260

and Oipartimento di Fisica, Unit ersita di Trento, Trento, Italpt

and Istituto JVa=ionale di Fisica Xucleare, Se=ione di Padot a, Padot a, Italy
2Center for Gratitational Physics and Geometry Pe.nnsylt ania State University, University Park, Pennsylvania l6802 636-0

(Received S August 1993)

A quantum Hamiltonian which evolves the gravitational field according to time as measured by con-
stant surfaces of a scalar field is defined through a regularization procedure based on the loop represen-
tation, and is shown to be finite and diffeomorphism invariant. The problem of constructing this Hamil-
tonian is reduced to a combinatorial and algebraic problem which involves the rearrangernents of lines

through the vertices of arbitrary graphs. This procedure also provides a construction of the Hamiltonian
constraint as a finite operator on the space of diffeomorphism invariant states as well as a construction of
the operator corresponding to the spatial volume of the Universe.
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One of the main problems of nonperturbative quantum

gravity has been how to realize physical time evolution in

the absence of a fixed background spacetime geometry
[1]. One solution to this problem, which has been often

discussed, is to use a matter degree of freedom to provide

a physical clock [2,3], and represent evolution as change
with respect to it. In this Letter we show that it is possi-

ble to explicitly implement this proposal in the full theory
of quantum general relativity, using the nonperturbative

approach based on the loop representation [4-7]. We use

a scalar field as a clock as suggested in several recent pa-

pers [8], and we show that it is possible to construct the

Hamiltonian operator H that gives the evolution in this

clock time.
We construct the Hamiltonian operator H by using

regularization techniques recently introduced [6,9] for

diffeomorphism invariant theories. The main result that
we obtain is that the operator 0, although constructed

through a regularization procedure that breaks diffeo-

morphism invariance, is nevertheless diffeomorphism in-

variant, background independent, and (as we have argued
elsewhere [9] is implied by these conditions) finite. It fol-

lows that 0 is well defined on the space, V, of the

diffeomorphism invariant states of the gravitational field.

As V is spanned by the basis given by the generalized
knot classes [4] (diA'eomorphism equivalence classes of
finite sets of loops in Z, the three-dimensional space man-

ifold), H is represented by an infinite dimensional matrix

in knot space. We present here a procedure for comput-

ing Bll the matrix elements of the Hamiltonian H in knot

space. This procedure is purely combinatorial and alge-

braic. Thus, our main result is the reduction of the prob-

lem of computing the physical evolution of the quantum

gravitational field with respect to a clock to a problem in

graph theory and combinatorics.
We begin by introducing the scalar field T(x), whose

three-surfaces of constant values may be taken, under ap-

propriate circumstances, to represent time [8]. We

denote the physical regime in which this can be done (in

which the scalar field grows monotonically everywhere on

Z) as the clock regime. The formalism developed here is

meaningful only within this regime. If we denote its con-

jugate momentum by tr(x), the Hamiltonian constraint is

where p is a constant. The gravitational contribution has

the standard form C'grav Einst+Aq where FEinst &(Jk

x E"E JF,"b and q =det(q, b). Here A is the cosmological

constant, and all other symbols have the usual meaning in

the Ashtekar formalism [10]. We then restrict the free-

dom of choosing the time coordinate by fixing the gauge

l3, T=0. This implies that the lapse is lV(x) =a/ (txr) for

some constant a and that all of the infinite number of
Hamiltonian constraints C (x) turn out to be gauge fixed,

except one, which is

(2)

(3)

We now proceed to construct the quantum operator H.

We regularize the integral by writing it as B limit of B

sum, and, in addition, we regularize each operator prod-

uct. We write

H= lim gL Q —CE'„'tt —Aqt
L O, A O, b 0 (

(4)

where wc have divided the spatial manifold X into cubes

of size L according to an arbitrary set of fixed Euclidean

coordinates, and the sum is over these cubes, labeled I.
Thc quantltlcs 6 and 2 arc parameters involved in tllc

ln the quantum theory the diffeomorphism invariant

states are then of the form O[Iaj, T], where Iaj indicates

B generalized knot class and the real number T is the con-

stant value of the time. These states satisfy a Schro-

dinger-type equation ih(d+/dT) =42pH+ where H is

the quantum operator corresponding to the observablc
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regularization of the Einstein term. The order in which the limits have to be taken is a crucial part of the definition of
the quantum operator: We specify this order belo~. Further, note that in the clock regime —Cg„.„ is strictly positive

everywhere, so that the clock measures time to flow in the same direction everywhere. The Einstein term is

] t t

d x d y d zf (x,y)f (x,z)g [T' [y», oy";b](y, z) —T' [y», o y„";b '](y,z)j,
2L 3A & cube I & 4 hb

(5)

where f (x,y) =(3/4»rB )8(8—Ix —yI) regulates the distributional products (8 is the step function). T is defined in

[4], y„», is a zero area curve running from x to y to z and back, and y;b is a circle based at x in the ab plane with area
A, all defined with respect to the arbitrary Euclidean coordinates. This operator depends on three regularization scales,
b, A, and L. It is straightforward to check that the classical expression corresponding to (4) and (5) reproduces (3)
when the limits are taken.

Let us now study the action of (5) on a loop state +[a]. First, the limit is zero unless there is an intersection in the
Ith cube. When there is an intersection, we will, for simplicity, restrict ourselves to the case in which the intersection is

formed by a meeting of smooth curves. In these cases, let us label the n curves going through the intersection point, p,
as a;,i = I, . . . , n Us. ing the explicit forms of the operator T' [4], we have

l4Pl
L Ei'qjt t+[a] =

3 g X(l i,j,B)sin(8J)g( I ) 8 [(ae el y ( )
.

( )) ] +[(ae;e& y ( ) („) ) ]I, (6)
AL i(g~n j I ~I I ~j P l J

where
f+ oo $ Oe)

X(l,i,j,h)=&'d xJ dsJ dtf (x,a;(s))f (x,at(t)). (7)

Here lp( is the Planck length, we have chosen a parametrization such that Ia; (s)I = I, and e; indicates the action of a
"grasp" [4] on the line a;. 8(~ is the angle between the ith and jth tangent vectors at the intersection point p and

y„", („), ( ) is a loop based at p in the a;(p)a~(p) plane, with area A. This loop and the sin(8;~) factor appear because
we have used the identitv

g v'w [%[awe y„";b] —%[awe y„";b ']j =IvIIwI sin(8„„)IN[ace y„"„„]—+[ace y„"„„']j,
a&b

which is true for every two vectors v and w, with an angle O„„between them, because its classical counterpart expressed
in terms of traces of holonomies is true, to order A, for all connections, and we require that all such identities be satisfied
in the loop representation [I I]. An explicit calculation then shows that for b((L, we have X(l,i,j,b) =4)r /sin(8~i)8, so
that the angular dependence in (6) cancels. This cancellation is the first "fortunate accident" that makes it possible to
define a diffeomorphism invariant operator.

Assuming that L has been taken small enough so that there is at most one intersection per cube, we then have
2II'

PE(p t t9 [a] = 3' Gt"0[a]+0(b /A ) +0(b/L ) (9)
BAL

where the operator GI is zero unless there is an intersection in the box I, in which case it is given by

Gt"e [al = g g( —
I )"[e[(ae;x ) y~. (p). (p))'] —e[(a*;*)yp. (,). (p)

')'ll .
i (j~n r

(IO)

The action of the operator G is to add a loop of area A

(measured by the fictitious background metric) based at
the intersection point in each plane made by each pair of
tangent vectors at the intersection, and then sum oier
rearrangements of the rooting through the intersection

Let us now discuss the finiteness and the diffeomor-

phism invariance of the operator. As far as finiteness is

concerned, the problem is to show that the limits 6 0,
A 0, and L 0 can be taken, respecting the conditions
assumed, namely, b«L and b «A, so that the resulting
operator in (4) is finite. We can accomplish this task if
we pose L =tcb and A =)r 8 /Z, with Z a free renormal-
ization constant, and take first the limit b 0 at fixed r,
followed by the limit K ~. This limit exists and is

finite because up to terms of order x ' the powers of 6
and x. coming from the operator and from the volume L
outside the square root in the sum (4) cancel. This can-
cellation is the second fortunate accident that makes the

I
present construction possible.

As the dependence on the regularization parameters
cancels, we may go on to discuss the diffeomorphism in-

variance of the operator. Let us assume that +[a] is a
diffeomorphism invariant state. To zeroth order in a

and 8, the action of 61 is diffeomorphism covariant, in

the sense that Gt"+[poa] =G&-i»+[a], the reason being
the following. For fixed a, and for small enough 6 the ac-
tion of the operator becomes independent of b, because
the added loop does not link any other component of a.
More precisely, for each given a and x, there is a 60 such
that for all 8 (bo there is a diffeomorphism + such that
Gt" )%[a] =Gt % [psoa] =Gt' 0'[a] up to terms
0(tr '), the last equality following from the diffeomor-
phism invariance of +. It follows that on the diffeomor-
phism invariant states the limit exists trivially because

(r382)close to 8=0 we have that Gt' +[a] is constant in 8
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(provided that the intersection remains in the box as the
box is scaled down). Moreover, the only effect on

(a 382)Gt" +[a] of a diA'eomorphism on a is (up to errors of
order 8 and x ') to possibly take the intersection outside
the box. This is because in the limit the action of the
operator (adding a small loop, which does not link any-

I
„, ,

thing, in the planes defined by the pairs of tangent vec-

tors, and rearranging the rootings at the intersection) is

well defined on the diA'eomorphism equivalence classes of
loops. Thus, the eAect of a diA'eomorphism on a can be

simply compensated by moving the box accordingly.
Next, the determinant of the three-metric is regulated

fO

.d S,(cr)) .d Ss(oz) .d S,(o3)T (0/ 02 cT3),10L;&b(,-" &
' " Ib & Ic

where the integrals are over the faces of the cube, which we labeled as Ia, summing both front and back, and
d S, =t.,b, d S ' is the area element of the ath face of the Ith cube. From the fact that as L 0 we have
T' '(o~, o2, a3) =e' 'q, the correct classical limit is assured. At the same time, this sum leads (see [6]) to the
diffeomorphism covariant quantum action

qt%'[al = $ g I[la, a;)1[lb,a~)I[le, a&]'N%'[a]+O(L),
L a&b&ci,j,k

(i 2)

where I[la, a;] is the intersection number between ath face of the Ith cube and the ith line coming into the intersection
and %' is the (diffeomoryhism covariant) linear operator that rearranges the rooting through the intersection according
to the grasp defined by T' ', and is zero if there is no intersection in the box.

Let us now put these results together. If we define the operator A, l by

L [L E";„,t't'
" +Aqt )%'[a] =JR&+[a]+O(x ')+O(8),

then we have found that when the Ith box contains an intersection

Jkt = lim 4tt /p~ZGt' +Ip~A $ g 1[la,a;]1[lb,
cr ~b~ci J.~

A

To complete the definition of the operator 0 we have to
take the square root and then take the limits. Since the
only nonvanishing terms in the sum in (4) come when

there is an intersection in the box, the sum reduces to a
sum over the intersections of a. This sum is now genuine-

ly diffeomorphism invariant. For each term, the square
root is equal to the square root of At; =Afl~;~, ~here, for
every 8 and x, 1(i) is the box in which there is the inter-
section i, plus terms that vanish as 6 0 for all fixed K.

If we take the limit 8' 0 and then x ~, we obtain
HO[a] g;[JK;]' +[a), where the sum is now over all

the intersections i of a. The action indicated of H is now

finite and diA'eomorphism invariant.
It remains to describe the form of the operator JK and

the meaning of its square root. To do this we choose a

basis for the diffeomorphism invariant bra states of the
form (m ~, . . . , mn;. Rp,'a ~, . . . , a„ l. This refers to a graph
with n intersections with 2m;, i = 1, . . . , n lines entering

a ]I[le,at, ]% +O(x' ') . (i 4)

each one. The discrete infinite dimensional index 'iV p la-

bels the knotting and linking of a nonintersecting link

class with P ordered open ends (a tangle [l2]), which are

joined to the intersections; here P =Z;2m;. Knots with

support on topologically equivalent graphs can still be

inequivalent: %e can vary the rooting through the inter-

sections, and the linear dependences among the tangent

vectors at intersection. These inequivalent knots span

a subspace of the state space, which we denote as

$[Rp, m~, . . . , mn]. This subspace is isomorphic to the

tensor product of a linear space V; for every intersection

i. V; is spanned by the basis vectors labeled by a;. [The

diAeomorphism equivalence classes formed by loops with

intersections (in which five or more lines join) are not

denumerable but are labeled by continuous parameters. ]
The operator Af; then has the form of an infinite di-

!
mensional matrix

~ ~ ~

I r ~~ 1~™+p
m ~, . . . , mn, Rp, Q ~, . . . , a;, . . . , an I JKi (m [, . . . , m;, . . . , mn, n p, ~, a. . . , i a~ an I [~&ti & a,'m; g, . (is)

The cosmological term is diagonal in the indices m; and

Rp because it only rearranges lines at the intersection.
The Einstein term is nonvanishing only in the first upper

diagonal in these indices; more precisely, it has the form

b 'b&,'", times -a matrix in the a; space. (Recall theml I 'RP+2

action of 8 described above. ) This structure gives At; a

relatively simple "block diagonal and upper diagonal"
form

[A ] 8~th r =bet b P[&q]J~+ 8m ~8 P+2[AE () n (l 6)

448

where Rp+2 is the P+ 2 tangle obtained from the P tan-

gle R by adding a simple loop which links nothing else in

R. The explicit computation of the blocks [JHOW), ,
' and

[JK; '""],
,
' is a slow but straightforward exercise in three-

dirnensional geometry and cornbinatorics, defined by the

rearranging of rooting through the intersection produced

by the grasps of the operators T' and T' '. The remain-

ing problem is to compute the square root of the matrix
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(16). A procedure to do this is under development, which

exploits the block diagonal structure of the matrix.
In summary, the result we reported is the discovery of

a regularization procedure that provides the definition of
a finite and diffeomorphism invariant physical-time-
Hamiltonian H, and reduces the computation of its ma-

trix elements to an algebraic problem in three-dimen-
sional geometry and combinatorics. This geometrical ac-
tion of the gravitational Hamiltonian H, which is just to
add loops and rearrange routing at the intersections of
the knots states, should code the full content of the Ein-
stein equations, in a diffeomorphism invariant form.

We close with some comments.
(i) The techniques described here also provide a finite

expression for the (full) Hamiltonian constraint, since we

can define the operator corresponding to H(f) =jzfJP
for any f This .makes it possible to define the Hamiltoni-
an constraint directly on the space of diffeomorphism in-

variant states. Using this operator, one should be able to
recover previous results [4,13] on the kernel of the Ham-
iltonian constraint.

(ii) As the A in (5) is canceled against other fac-
tors, the limit taken in (4) does not define a loop deriva-
tive. It would be of interest to investigate the space of
loop functionals on which this limit is well defined; unlike

the space of loop differentiable states, this space includes
the diffeomorphism invariant states.

(iii) We do not expect the Hamiltonian to be self-

adjoint and have only real eigenvalues: Outside the clock
regime (defined above) the evolution with respect to the
time defined by the scalar field becomes nonunitary. This
simply signals that the system is exiting the clock regime
(see [3,14] for more details). Thus, the formalism
developed here can only be applied to a subspace of the
quantum state space (corresponds to the classical clock
regime) on which the Hamiltonian is well behaved. This
is precisely those parts of the space of diffeomorphism in-

variant states spanned by the eigenstates of Afl whose ei-
genvalues have positive real part.

(iv) An extension to fermions of the present construc-
tion has been developed in Ref. [14].

(v) Our construction provides a definition of the
diffeomorphism invariant operator for the volume of 3D
space.

(vi) The finiteness of the Hamiltonian is not sufficient
for the evolution operator to be finite. It is necessary to
compute at least the second order term in the expansion
in time of the evolution operator to see whether the sums
over virtual states converge [15].
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