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Quantum Lens for Atomic Waves
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We consider the focusing and deflection of a nonresonant atomic beam propagating through a
spatially inhomogeneous quantized electromagnetic Geld. Different Fock states of the field deflect the
atoms in different angles and focus them at different points. We find a regime in which individual foci
corresponding to neighboring Fock states can be resolved even for large average number of photons.
In this sense this quantum lens for atomic waves leaves intact the discreteness of the photons even
in the classical limit.

PACS numbers: 03.65.8z, 42.50.Wm

The discrete nature of photons is the central conse-
quence of the quantization of the electromagnetic field

[1]. Intuitively we associate this property with a field
of small average photon number, although the discrete
composition persists in the classical limit. But how to
resolve in this case the individual photon states? In the
present paper we show that focusing of atomic waves by
standing light field [2] allows us to do this.

A nonresonant atom in an electromagnetic field feels a
potential which is proportional to the field intensity and
the susceptibility of the atom [3]. Therefore, a nonuni-
form field can defiect [4] and focus [5] an atomic beam.
The larger the intensity, the stronger the defiection and
the focusing. Two different intensities defiect the beam
in two difFerent directions [6] and focus the atoms at dif-
ferent points. On the quantum level two difFerent inten-
sities correspond to two difFerent photon number states.
In principle we can resolve in this way two neighboring
photon number states, that is the discrete structure of
the electromagnetic field as shown in Fig l. But what is
the maximum resolution?

We answer this question by the analogy to classical op-
tics. We recall [7] that the typical size 6 of the focal spot
is given by the reduced de Broglie wavelength QB multi-
plied by the ratio of the focal distance T and the width d
of the atomic beam, that is 6 = PAgB/d. The size of the
focal spot in the direction z of the "optical" axis differs

from the size in the perpendicular direction z by a geo-
metrical factor, which is given by the ratio of the focal
distance and the size of the lens. In the following analysis
this is of the order of unity. The inverse focal distance de-

pends linearly on the number of photons n, and hence the
relative change b,E/P of the focal distance correspond-

ing to two neighboring photon number states is inversely
proportional to n, that is b,E/P = 1/n. Hence the two

photon states can be resolved provided that b ( b,P,
that is

6 Adn

bP d

R(x)

FIG. 1. Quantum lens. Different Fock states deflect atomic
beam at different angles and focus the beam at different
points.
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It yields n ( n „—:d/AdB. Therefore d/Adn is the
maximum number of Fock states that can be resolved.

What is the order of magnitude for n „?The ex-
perimental situation of helium atoms of 27rAdB = 0.56 A
focused by a A = 1 pm wavelength laser [5] suggests that
this method can, in principle, resolve n „=d/A~B
3 x 104 individual photon number states for d = A/4.
Motivated by this optimistic estimate we now consider
the problem in more detail.

An atomic beam with an intensity profile fz(x) prop-
agating in the z direction enters a cavity with a single
mode of a quantized electromagnetic field. The field is in-
homogeneous in the z direction and therefore scatters the
atoms. For the sake of simplicity the system is assumed
to be uniform in the y direction. At the entrance of the
cavity, at z = L, the—state vector ~4'(z = —L)) of the
combined system is a direct product of the atomic state
~b), the field state Pvi„[n),and the state jdx'f(x')~z')
of the atomic transverse motion, and vi„=—(n[g) denotes
the probability amplitude of the photon number state in
the state [g) of the light field. We take the frequency of
the field to be strongly detuned from the atomic transi-
tions. In this case the atom remains in the initial internal
state, and we can describe the interaction by the effective
Hamiltonian [8]

H, ff = g(z)at a, (2)

where a and at denote the annihilation and creation op-
erators of the field, and the coupling constant g(z) =
o(fo(x) is the atomic linear susceptibility a multiplied
by the "square of the electric field per photon. " In the
present paper we assume that the kinetic energy &~Mvz,

is large compared to H,ff and, hence, the interaction with
the light field does not change considerably the velocity
v, of the atom. Therefore, the z coordinate plays the
role of time t = z/v, in the evolution of the state vector
corresponding to the transverse motion and the field.

P2
In the cavity we neglect the kinetic energy Hr, ~ =

zM
of the transverse motion of the atom compared to Heff.
Therefore the state vector of the system at the exit of the
cavity at z = 0 reads

i - I
0'(z = 0)) = exp -H, ff — 4(z—= —L))

h ' v,

= )

vi„deaf(x)

exp i n~z)~n). —(3—)
.g(x) L

~=o v,

Outside of the cavity the dynamics of the atom in x di-
rection is governed by Hf,~ and, hence, the state vector
at a position z is given by

(z)) = exp -H&, — le(z =—0)). (4)v,

W(x, z) = ) (x, n 4(z)) = ) W„R(x, z), (5)
n=o n=o

where W„=[vi„~ is the photon statistics of the field, and

R„(x,z) = ng(x)L (x—x)2 f(x)dx
exp

zhv, 2i,AgB z /27riz Agn

(6)

is the intensity of the atomic partial wave corresponding
to the nth Fock state D. eriving Eq. (6) we have made
use of the fact that the evolution of the free particle given

by the Hamiltonian Hf„,implies [9] the convolution of
the wave function at z = 0 with the Green's function

1
G(x, z~x, z = 0) =

2n'i zAsB

(x —z)'
exp i

g(z) = go + gix + 2gs z ,
1 2 (9)

keeping only the first three terms. When we substitute
these expressions into Eq. (6) and perform the integra-
tion we arrive at

1 nz+ NxR„(z,z) = ~ exp — ), (10)

where D„(z)and N are given as

D„(z)—:[(Agnz/d) + d (1 —n N 'gz/giz) ]', (11)

N —= hv, /(AsngiL) = Mv, /(giL). (12)

Hence the nth partial wave with intensity ~(x, z) is
a Gaussian beam propagating in the x-z plane under an
angle

8„=—arctan(n/N)

with respect to the z axis. Positive g~ result in a positive
value for N and thus in negative defiection angles 8„.
Negative yq result in positive deHection angles. Note that
in the framework of our approximation Hf Q( H ff ((
Mvz/2 we always have N)) n and hence ]8„]((l.

For positive g2 the width D„ofthe partial beam
reaches its minimum for positive z and thus the nth par-
tial wave focuses at the point

of a free particle where the reduced de Broglie wavelength

AdB = h/(Mv, ).
Now evaluate the intensities R„for a Gaussian profile

f(x) = (~~d) '~ exp —z(x/d)

of the atomic beam of width d centered at z = 0. We ex-

pand the coupling g(x) into a Taylor series around x = 0,

From this expression we obtain the probability W(x, z)
to End the particle at the point with the coordinates x
and z. We arrive at

gaÃ &M
z

g2n n ggL

x„=X„tan 8„=—gi/gg. (15)
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FIG. 3. Intensity of atoms along the line of foci x = —~ for an atomic wave deflected and focused by a coherent state of
9'g

average number of photons n = 80. The separate foci clear).y resolve the individual Fock states of this field. In the insets we

magnify the central part (a) of the intensity and give the corresponding contour plot (b) of the probability density W(x, z).
Parameter values are the same as in Fig. l.

b = 27r(d/A)(O&/A). Hence from Eq. (21)

n
O

(23)

When we take d/A 1/3 and follow Ref. [11]with OR =
+22m x 3.2 MHz and A = 3 x 10~ s ~ we find n,

„

3. Note, however, that in this case we should have an
interaction time I/v, = A = 3.2 x 10 s s which is 10
times shorter then in the experiments of Ref. [11].

An important consequence of Eq. (23) is that n
scales as y, 2. Hence a weak transition allows a longer
interaction time and therefore results in a larger number
of photons that can be resolved. Let us take for example
the transition 6 Sqg2-7 PV s of Cs with A = 459 nm and
the oscillator strength 2.84 x 10 ~ which yields n
7. For this case the interaction time is about 3 x 10 ~

s. We find for the focal distance Eq. (14) of the first
Fock state Eq 6 mm when we make use of the relation

gq 2ngq/A and take the parameters of this experiment
I = 100 pm, Mc, = 2.2 x 10 2z

g, and v, 3 x 10~ m/s.
In order to resolve more Fock states we have to look

for a more suitable atomic transition. Let us take for
example a potassium atom in the excited state sP of the
energy 24713.9 cm . The decay rate p ~ 7.5x10 s of
this state limits the maximum time of flight I /v, of the
atom through the cavity of Ref. [11].For a velocity v, )
750 m/s the product pI/v, is still less than unity and
therefore ere can ignore spontaneous processes. Indeed,
we find [12] for the transition 2PO —~ D with A = 3725.5
nm the Einstein coefflcient A = 3.5 x 10s s ~ and the
transition strength 8 = p2 = 880 a.u. , which yields the

transition dipole moment p = 2.5 x10 s Cm. When we
substitute these parameters into Eq. (23) we find n~«
80. We also note that this wavelength corresponds to
the generation band [13] of the color-center laser (F&+)A
which can be used for the experiment.

In Figs. 2 and 3 we illustrate the functioning of the
quantum lens using an ideal atomic beam and a coherent
state, that is, the most classical state of the radiation
field. For small average photon number (n = 1) a con-
tour plot of the atomic probability W(x, z) given by Eq.
(5) shows the discrete structure of the electromagnetic
field as individual partial atomic waves deflected under
difFerent angles e„,Eq. (13). These waves are focused
along the Mds of the atomic lens x = —gq/gz, Eq. (15).
Figure 3 is the cut of the probability density along this
line, that is W(x = —gq/gs, z), for a large average num-

ber of photons (n = 80). The individual Fock states are
clearly resolved with an envelope given by the Poisso-
nian photon statistics of the field. We note that in order
to have good resolution we have to satisfy the condition

gq/g2 ) d, that is the deflection has to be larger than the
width of the atomic beam.

We conclude by summarizing our main results: A
quantum lens for atomic waves allows us to observe the
discrete structure of the electromagnetic Geld of a large
mean photon number. The experimental facilities neces-
sary for this approach are presently available. Moreover,
&re note, that the quantum lens may have important prac-
tical applications in surface science: It allows us to de-
posit regular structures [14] with a period of atomic size.
The discreteness of photons guarantees the regularity of
these structures.
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