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Quantum Lens for Atomic Waves
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We consider the focusing and deflection of a nonresonant atomic beam propagating through a
spatially inhomogeneous quantized electromagnetic field. Different Fock states of the field deflect the
atoms in different angles and focus them at different points. We find a regime in which individual foci
corresponding to neighboring Fock states can be resolved even for large average number of photons.
In this sense this quantum lens for atomic waves leaves intact the discreteness of the photons even

in the classical limit.
PACS numbers: 03.65.Bz, 42.50. Wm

The discrete nature of photons is the central conse-
quence of the quantization of the electromagnetic field
[1]. Intuitively we associate this property with a field
of small average photon number, although the discrete
composition persists in the classical limit. But how to
resolve in this case the individual photon states? In the
present paper we show that focusing of atomic waves by
standing light field [2] allows us to do this.

A nonresonant atom in an electromagnetic field feels a
potential which is proportional to the field intensity and
the susceptibility of the atom [3]. Therefore, a nonuni-
form field can deflect [4] and focus [5] an atomic beam.
The larger the intensity, the stronger the deflection and
the focusing. Two different intensities deflect the beam
in two different directions [6] and focus the atoms at dif-
ferent points. On the quantum level two different inten-
sities correspond to two different photon number states.
In principle we can resolve in this way two neighboring
photon number states, that is the discrete structure of
the electromagnetic field as shown in Fig 1. But what is
the maximum resolution?

We answer this question by the analogy to classical op-
tics. We recall [7] that the typical size 6 of the focal spot
is given by the reduced de Broglie wavelength A\gg multi-
plied by the ratio of the focal distance F and the width d
of the atomic beam, that is § = FAgg/d. The size of the
focal spot in the direction z of the “optical” axis differs

from the size in the perpendicular direction z by a geo-
metrical factor, which is given by the ratio of the focal
distance and the size of the lens. In the following analysis
this is of the order of unity. The inverse focal distance de-
pends linearly on the number of photons n, and hence the
relative change AF/F of the focal distance correspond-
ing to two neighboring photon number states is inversely
proportional to n, that is A¥/F = 1/n. Hence the two
photon states can be resolved provided that § < AF,
that is
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FIG. 1. Quantum lens. Different Fock states deflect atomic
beam at different angles and focus the beam at different
points.
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It yields n < npmax = d/AaB. Therefore d/)\gp is the
maximum number of Fock states that can be resolved.

What is the order of magnitude for nya.? The ex-
perimental situation of helium atoms of 2r\qg = 0.56 A
focused by a A = 1 pm wavelength laser [5] suggests that
this method can, in principle, resolve nyax = d/Agp ~
3 x 10* individual photon number states for d = \/4.
Motivated by this optimistic estimate we now consider
the problem in more detail.

An atomic beam with an intensity profile f?(z) prop-
agating in the z direction enters a cavity with a single
mode of a quantized electromagnetic field. The field is in-
homogeneous in the z direction and therefore scatters the
atoms. For the sake of simplicity the system is assumed
to be uniform in the y direction. At the entrance of the
cavity, at z = —L, the state vector |¥(z = —L)) of the
combined system is a direct product of the atomic state
|b), the field state > wn|n), and the state [ dz’f(z')|z’)
of the atomic transverse motion, and w, = (n|y) denotes
the probability amplitude of the photon number state in
the state |¢) of the light field. We take the frequency of
the field to be strongly detuned from the atomic transi-
tions. In this case the atom remains in the initial internal
state, and we can describe the interaction by the effective
Hamiltonian (8]

I?e = g(l‘)dt a, (2)

where a and a' denote the annihilation and creation op-
erators of the field, and the coupling constant g(z) =
a&(z) is the atomic linear susceptibility o multiplied
by the “square of the electric field per photon.” In the
present paper we assume that the kinetic energy %M vZ,
is large compared to Hegr and, hence, the interaction with
the light field does not change considerably the velocity
v, of the atom. Therefore, the z coordinate plays the
role of time ¢ = z/v, in the evolution of the state vector
corresponding to the transverse motion and the field.

A 2
In the cavity we neglect the kinetic energy Hree = ,f i

of the transverse motion of the atom compared to Heg.
Therefore the state vector of the system at the exit of the
cavity at z = 0 reads

|¥(z = 0)) = exp [—ﬁ off — } |¥(2 = -L))

=2 - d:cf(:z:)exp[ 9@ L ]|>|n> 3)

Outside of the cavity the dynamics of the atom in z di-
rection is governed by Hy.e and, hence, the state vector
at a position z is given by

W) = e [~3Him] [W=0). (@

From this expression we obtain the probability W (z, z)
to find the particle at the point with the coordinates x
and z. We arrive at
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W(z,z) =

> 2
Z !(:z:, n|\IJ(z))|
n=0
where W,, = |w,|? is the photon statistics of the field, and

(2 (@D (@-3)?] f(@)d
R"(x”’)‘l /_ooexp[ ihv, 2@\de] V/2miz)ap
(6)

is the intensity of the atomic partial wave corresponding
to the nth Fock state. Deriving Eq. (6) we have made
use of the fact that the evolution of the free particle given
by the Hamiltonian Hfee implies [9] the convolution of
the wave function at z = 0 with the Green’s function

[z -8
2'\de ] (7)

=Y WpRn(z,2), (5)
n=0

G(z,z|Z,2=0) =

1

of a free particle where the reduced de Broglie wavelength
AdB = h/(Mv;).
Now evaluate the intensities R, for a Gaussian profile

() = (Vad) 2 exp [ - 5(z/d)’] (8)
of the atomic beam of width d centered at z = 0. We ex-
pand the coupling g(z) into a Taylor series around z = 0,

9(z) = go + g1z + 392 2%, (9)

keeping only the first three terms. When we substitute
these expressions into Eq. (6) and perform the integra-
tion we arrive at

where D,,(2) and N are given as
D,(2) = [(\az/d)? + d*(1 —n N7lg2/g12)})"/2  (11)
N = hw,/(Aag1 L) = MvZ/(g:L). (12)

Hence the nth partial wave with intensity R,(z,z2) is
a Gaussian beam propagating in the z-z plane under an
angle

6, = —arctan(n/N) (13)

with respect to the z axis. Positive g; result in a positive
value for N and thus in negative deflection angles 6,.
Negative g; result in positive deflection angles. Note that
in the framework of our approximation Hfree < Heg <
Mwv?/2 we always have N >n and hence |6, < 1.

For positive go the width D, of the partial beam
reaches its minimum for positive z and thus the nth par-
tial wave focuses at the point

g1N ].M‘U
n = fﬂ = e—— 14
“ g2n  n gL’ (14)
n = Fntan 0, = —g1/g2. (15)



VOLUME 72, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JANUARY 1994

Hence all foci lie along a straight line parallel to the direc-
tion of incident atoms. The net probability W (z, z), Eq.
(5), for an arbitrary field state is a superposition of par-
tial Gaussian beams weighted with the photon statistics
W,. This results in a multifocal structure for W (z, z).

Let us now concentrate on the distribution of atoms
along the focal line £ = —g; /g2. We can identify the con-
tributions of individual number states when the widths
6z, of the foci are narrower than their spacing

AFy = Fom Fra = 80, (16)
that is
bzp < AF,. 17
We find 6z, by expanding the exponent of Eq. (10)
around the focus and arrive at
bz = S y22aB 1 (18)

g2 d n?

Hence the condition Eq. (17) for resolving neighboring
Fock states reads

5zn _ AdB

This condition is n independent. But from Eq. (13)
and the imposed condition 8,, < 1 follows that the maxi-
mum number of photons which can be resolved is of the
order of N which yields the estimation nmax ~ d/Agn
mentioned at the beginning of the paper.

We emphasize, however, that the high performance of
this quantum lens cannot be achieved with an atomic
beam of low monochromaticity and bad collimation. In-
deed, a velocity spread 6v, translates itself via the rela-
tion F, ~ vZ/n, Eq. (14) into a spread 6F, = 2F,6v, /v,
of the foci. In order to resolve two neighboring foci, that
is two neighboring Fock states, this spread in the focal
length has to be smaller than the distance AF, = F,/n
between the foci. Therefore nmax < v,/26v, is the con-
dition for the maximum number of photons that can
be resolved with a given atomic beam. Using a laser
cooled beam a longitudinal velocity spread of év, /v, =
1.2 x 1072 has been achieved [10]. This constraint on
the velocity spread leads to the condition ngmax ~ 4 x 102
photons that we can resolve. The transverse spread in
velocity, that is the collimation of the beam is less cru-
cial, since any part of the beam inclined to the optical
axis is focused in the same focal plane. Transverse spread
mainly widens the focal spots in the z direction without
considerable effect in the z direction.

We now estimate the maximum number of Fock states
that the quantum lens can resolve by currently avail-
able experimental techniques. For this purpose we first
rewrite Eq. (19) by substituting N from Eq. (12), es-
timate g; ~ af3(0)4 and take the polarizability a =

u? /AR, where A is the detuning from the nearest reso-
nance. We arrive at

Qr\%d, L
1 — ] =A—,
< 27r( A ) Py
where Qg = p&y/h is the vacuum Rabi frequency.
Apart from this condition for resolution we have to
guarantee the applicability of our approach based on the

nondemolition Hamiltonian Eq. (2): We can ignore tran-
sitions to the upper state, provided

(Qr/A)A <1,

(20)

(21)

and furthermore we can neglect spontaneous emission re-
sulting from the absorption at the wings of the spectral
line if

(Qr/A)*RAL/v, <1, (22)
where 71 is the average number of photons and A is
the Einstein coefficient. The ultimate limit of npay, A,
and L/v, follows when we replace in Egs. (20)-(22) in-
equalities by equalities. From Egs. (21) and (22) we
find immediately v,/L = A, and hence from Eq. (20)
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FIG. 2. Contour plot (a) for probability W (z, z) of finding
the atom at the point with coordinates z and 2. The Gaussian
atomic beam centered at z = 0 leaves the cavity at z = 0. The
cavity field is in a coherent state of average number of pho-
tons 7 = 1. The undeflected and unfocused partial wave Ro
associated with the cavity vacuum state represents the profile
of the incident beam. The deflected partial waves Ry, Rz, R,
and R4 associated with the photon statesn = 1,2,3, and 4 in
the coherent state of the field focus along the line z = —g1/ga.
The intensity of atoms along this line is shown in (b). Param-
eters used are g1/g2d = 2; (g2d?/R)(L/v.) = 3x/2.
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FIG. 3. Intensity of atoms along the line of foci z = —-‘y“- for an atomic wave deflected and focused by a coherent state of
average number of photons 77 = 80. The separate foci clea.rzly resolve the individual Fock states of this field. In the insets we
magnify the central part (a) of the intensity and give the corresponding contour plot (b) of the probability density W (z, 2).

Parameter values are the same as in Fig.1.

A = 2m(d/A)(9%/A). Hence from Eq. (21)

Qg d\°
Nmax = (27!'—14— —A-) . (23)

When we take d/\ ~ 1/3 and follow Ref. [11] with Qg =
V22r x 3.2 MHz and A = 3 x 107 s™! we find nmax ~
3. Note, however, that in this case we should have an
interaction time L/v, = A~! = 3.2 x 1078 s which is 10
times shorter then in the experiments of Ref. [11].

An important consequence of Eq. (23) is that nmax
scales as u~2. Hence a weak transition allows a longer
interaction time and therefore results in a larger number
of photons that can be resolved. Let us take for example
the transition 625, /2-72P1 /2 of Cs with A = 459 nm and
the oscillator strength 2.84 x 10~2 which yields nmax ~
7. For this case the interaction time is about 3 x 10~7
s. We find for the focal distance Eq. (14) of the first
Fock state F; ~ 6 mm when we make use of the relation
g2 ~ 2mg1 /) and take the parameters of this experiment
L =100 pm, Mcs = 2.2x10"%2 g, and v, ~ 3x10% m/s.

In order to resolve more Fock states we have to look
for a more suitable atomic transition. Let us take for
example a potassium atom in the excited state 2P° of the
energy 24713.9 cm~!. The decay rate y ~ 7.5x 10 s~1 of
this state limits the maximum time of flight L/v, of the
atom through the cavity of Ref. [11]. For a velocity v, >
750 m/s the product vL/v, is still less than unity and
therefore we can ignore spontaneous processes. Indeed,
we find [12] for the transition 2P° —2 D with A = 3725.5
nm the Einstein coefficient A = 3.5 x 10% s~ and the
transition strength S = u? = 880 a.u., which yields the
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transition dipole moment y = 2.5 x 10~28 Cm. When we
substitute these parameters into Eq. (23) we find npax ~
80. We also note that this wavelength corresponds to
the generation band [13] of the color-center laser (F;')A
which can be used for the experiment.

In Figs. 2 and 3 we illustrate the functioning of the
quantum lens using an ideal atomic beam and a coherent
state, that is, the most classical state of the radiation
field. For small average photon number (72 = 1) a con-
tour plot of the atomic probability W(z, z) given by Eq.
(5) shows the discrete structure of the electromagnetic
field as individual partial atomic waves deflected under
different angles 6,,, Eq. (13). These waves are focused
along the axis of the atomic lens £ = —g; /g2, Eq. (15).
Figure 3 is the cut of the probability density along this
line, that is W(x = —g1/92, 2), for a large average num-
ber of photons (7 = 80). The individual Fock states are
clearly resolved with an envelope given by the Poisso-
nian photon statistics of the field. We note that in order
to have good resolution we have to satisfy the condition
91/g2 > d, that is the deflection has to be larger than the
width of the atomic beam.

We conclude by summarizing our main results: A
quantum lens for atomic waves allows us to observe the
discrete structure of the electromagnetic field of a large
mean photon number. The experimental facilities neces-
sary for this approach are presently available. Moreover,
we note, that the quantum lens may have important prac-
tical applications in surface science: It allows us to de-
posit regular structures [14] with a period of atomic size.
The discreteness of photons guarantees the regularity of
these structures.
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FIG. 1. Quantum lens. Different Fock states deflect atomic
beam at different angles and focus the beam at different
points.



