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The interactions and correlations of charged rodlike colloidal particles are investigated using an ab in-
itio approach which includes many-body inter-rod forces induced by nonlinear counterion screening. It
is found that these forces can satisfactorily be described by an eAective Yukawa segment model which in

general differs from the traditional Derjaguin-Landau-Verwey-Overbeek theory. Whereas no simple
analytical expression for the Yukawa parameters is available for the disordered phase, an exactly soluble
cylindrical cell model reproduces the ab initio data quite well in the liquid-crystalline phase.

PACS numbers: 82.70.Dd, 61.20.6y, 61.30.—v

Charge-stabilized colloidal suspensions of rigid rodlike
particles represent excellent realizations of liquid-crys-
talline systems on a mesoscopic length scale [1,2]. There
are quite a number of concrete examples ranging from
concentrated aqueous suspensions of tobacco-mosaic
viruses (TMV) [3] or bacterial fd viruses [4] to cylindri-
cal micellar aggregates [5] and ellipsoidal polystyrene la-

tex particles [6]. In 1936 the first experimental proof of
liquid-crystalline order was given by Bawden et al. [7] us-

ing a TMV suspension. Since then a flurry of experimen-
tal and theoretical investigations followed. Recent exper-
iments, mainly for TMV, have essentially contributed to
our understanding of the structural and dynamical corre-
lations in the disordered phase [8] and have also revealed
a complex phase diagram including nematic [9], smectic
[10], columnar [11], and crystalline phases. Despite
these numerous investigations, the full phase diagram for
TMV is still not entirely understood over the full range of
densities and added salt concentrations.

Theoretically the knowledge of correlations and the

phase diagram of a rodlike charged suspension is rather
rudimentary, since the form of the inter-rod forces which

is a necessary basic input for any statistical mechanics

theory is not known exactly. Up to now theoretical work

was directed along two lines. First the screened electro-
static interaction between rods was mapped onto that of
hard spherocylinders [10,12] where the phase diagram is

known [13]. This idea was first indicated by Onsager
[14]. In view of the fact that the phase diagram depends
sensitively on details of the interaction it becomes clear
that this approach is too crude if quantitative predictions
on correlations and on the complexity of the phase dia-

gram are demanded. Second a more realistic description
of the rod interaction was introduced and discussed by
Klein and co-workers [15]. They studied a model of seg-
ments with point charges along the rods interacting via a
pairwise Yukawa potential according to the classic
Derjaguin-Landau-Verwey-Overbeek (DLVO) [16] theo-

ry of linear screening. This model is only justified in the
limit of infinite dilution [17] but fails in the regime of
strong interaction where liquid-solid phase transforma-
tions take place.

In this Letter, ab initio simulations for charged rods in

a salt-free suspension are reported based on the adiabatic
"primitive" model of highly asymmetric electrolytes
where the counterionic density field is explicitly taken
into account. This approach was recently proposed in

Ref. [18] by Hansen and co-workers ~here it was applied
to spherical colloidal particles. Combining molecular dy-
namics (MD) for the rods and classical density functional
theory for the counterions, many-body forces and torques
between the rods induced by nonlinear counterion screen-
ing are systematically included. While these nonlinear
screening effects are neglected in DLVO theory, they be-
come essential for strongly interacting charged suspen-
sions. Contrarily an ab initio simulation of the full prim-
itive model is impossible on present-day computers due to
the large charge asymmetry and the corresponding large
time scale separation between counterionic and rod

motion.
As a result, the interactions and correlations between

the charged rods are obtained in the disordered and crys-
talline phase. Fitting the many-body forces and torques

by an effective segment model of point particles interact-

ing via a pair potential, one extracts an optimal effective

segment model. Interestingly enough the shape of the op-
timal pair potential is very close to a Yukawa potential.
This optimal effective Yukawa segment model satisfacto-
rily reproduces the ab initio data for the pair correlations
and is thus a reasonable simple model for the rod interac-
tion. Consequently, the Yukawa segment picture used by
Klein and co-workers [15] is justified if one uses Yukawa
parameters that are renormah'zed with respect to DLVO
theory. In order to predict a simple analytical expression
for the optimal Yukawa parameters an exactly soluble
Poisson-Boltzmann model in a cylindrical Signer-Seitz
cell is proposed which is designed for strongly interacting
aligned rods. In the liquid-crystalline phase this model

agrees quite well with the optimal effective Yukawa seg-

ment model. In the fluid phase, ho~ever, a simple ex-

pression for the Yukawa parameters is not known such

that one has to perform a full ab initio calculation.
In the ab initio calculations, the charge distribution of

the spherocylindrical rods with total length L and cylin-
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drical radius R is modeled by N, equal point charges Ze
located equidistantly along the rods such that their

charge line density is z =N, Ze/L. The pointlike coun-
terions carry an opposite charge —qe (qe«zL) and in-

teract via the Coulomb potential V„(r)=q e /er where e
is the dielectric constant of the solvent. Moreover, the
counterion-rod and inter-rod interactions are modeled to

Nr

be a combination of the excluded rod volume and the cor-
responding Coulomb forces. A configuration of N, rods
is characterized by their center-of-mass positions {R;j
and by a set of unit vectors {Q;j determining their orien-
tations (I (i (N„) T.he total Lagrangian X of the adi-
abatic "primitive" model involves MD for the rods and

t

density functional theory for the counterions

X = g ( —,
' MR; + —,

' eQ; ) — g V„,(R; —Ri, Q;, QJ) —P([p, (r)],{R;j,{Q;j),
i l ij ii&j

where M and 8 are the mass and the moment of inertia
of the rods and V„(R;—RJ, Q;, QJ) is the direct inter-rod
potential. Furthermore, P([p, (r)],{R;},{Q;j) is the free
energy functional of the counterion density field p, (r) in

the external field made up by the rods. For P the local
density approximation (LDA) plus a mean-field term is

adopted [18]. The equations of motion generated by X
are integrated numerically at fixed temperature T under
the constraints of global charge neutrality (with fixed
mean counterion density p, ) and fixed unit norm of Q;
using the Car-Parrinello method [19] and a rod-
pseudopotential approximation similar to that in Ref.
[18]. After a sufficient equilibration period statistics are
gathered for rod correlations. In addition to the direct
pairwise inter-rod forces on the center of masses
—VR,+i J /'t (J V„,(R; —RJ, Q;, QJ ) there are counter-
ion-induced many-body forces —+it,P([p, (r)]; {R;j,
{Q;})where p, 1(r) is the configuration-dependent equi-
librium counterion density obtained from minimization of
P. In analogy also the torques acting on the rods exhibit
a many-body character induced by the counterions.

During the ab initio simulations, a number of typical
rod configurations and the associated forces {F;j and
torques {M;j were stored. A least-squares fit of these
forces and torques with an effective pair potential V,tt(r)
on N, segments along the rods then yields an optimal pair
interaction between the rods. Since force and torque
enter into the equations of motion and thus determine the
correlations, this direct fit is superior to a fit of the free
energy by an effective two-particle potential. Performing
this fit procedure for several runs and parameter com-
binations the following results were obtained: First, the
ab initio many-body forces and torques are reproduced
within an averaged error of less than 3%. Second, the fit

LR(1+p ) Ki (xpR)I ( (xpRO) —Kl (xpRO)1) (xpR
Zp

laRoxpN, I i(xpRO)Kp(xpR p)+Ip(xpR)K i(xpR
Here, 1„(x) and K„(x) are Bessel functions of imaginary
argument of order n. This cell model is designed for long
aligned rods which @re strongly interacting since only the
boundary of the cell is treated adequately, but it is not
expected to work in the disordered phase.

Ab initio results are presented for two different runs in
the disordered and crystalline phase. The temperature is
fixed to T=300 K (room temperature) and the solvent

PCp
= K'D

I+P
2zltt Rjp,

(2)

where lti e q /ekttT is the Bjerrum length and p is
the zero of arctan [(Ittz/e —I )/P]/P+ arctan(1/P)/P—In(RO/R). For the effective segment charge Zp one

)
gets

) (3)

dielectric constant is that of ~ater, a =78. As for the run
in the disordered phase (run A), N„=108 rods are put
into a periodically repeated cubic simulational box with

96 grid points to resolve the counterion density field
[23]. Each rod has a total length L =295 nm, a cylindri-
cal radius R 47 nm and is composed of 1V, 3 segments
with a segment charge Z =45, having a distance of d

is robust against small system size (N, )8) indicating
that a simulation of a small system is already suScient to
get the optimal V,s(r). Comparing different Ansatze
with two variational parameters, a Yukawa form V,tt(r)
=Z e exp( —x r)/er with an inverse screening length
x and an effective segment charge Z* is an acceptable
fit superior, e.g. , to an inverse power-law Ansatz. As will

be shown below this optimal Yukawa segment model
reproduces the ab initio data for the rod pair correlations
satisfactorily. However, for a highly interacting system,
the optimal Yukawa parameters x* and Z* differ strong-
ly from their DLVO values

xo =one q p, /ekttT,

Zo =zL exp(xoR)/(I + xoR)N, e.

In order to establish a simple connection of x* and Z*,
x to the rod parameters and rod concentration p„a
model is proposed where the nonlinear Poisson-
Boltzmann (PB) equation [20] for one infinitely long rod
in its cylindrical Wigner-Seitz cell of radius RO= I/
JttLp, is considered [21]. The equilibrium counterion
density can be calculated analytically in this geometry
[22]. Linearizing the PB equation at the Wigner-Seitz
cell boundary one obtains the two Yukawa parameters of
the Poisson-Boltzmann cell (PBC) model, xp and Zp, as
follows
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=101 nm along the rods. The rod density is p, =3.55/
L corresponding to a concentrated system with a rela-
tively high volume fraction &=0.25. Orientational pair
correlations are conveniently measured by the function

Z;.J'- i;;~J (P2(cos8;J )b(r —(R; —RJ ) ))
N

Z;,;-,,;.,(b(.—(R; —R, ) ) &

(4)

where 8;~ is the angle between two orientations 0; and

Qt and P2(x) = (3x —1)/2 is the second Legendre poly-
nomial. ( ) denotes a canonical average. If gp(r) is

positive, the averaged orientation of two rods at a given
center of mass distance r is parallel whereas it is perpen-
dicular for gp(r) &0. Ab initio results for gp(r) are
shown in Fig. 1 together with that of three different Yu-
kawa segment models based on standard MD simulations:
the optimal ab initio fit, the DLVO, and the PBC model.
In general, gp(r) is negative for small distances, becomes
positive with a maximum roughly at mean distance
a p„'i, and finally tends oscillatorily to zero as r
It can be seen that the DLVO and the PBC model un-

derestimate the structure considerably whereas the ab in
itio results are fairly well reproduced by the optimal Yu-
kawa segment model. The same trend can be seen for
other pair correlations and in data for single-rod proper-

ties as the mean force F J(FJ) or the mean torque

M J(Mj). The ab initio fit deviates only 3% from the
ab initio data whereas DLVO (PBC) theory strongly un-

derestimates these quantities by 21% (37%). In con-
clusion, single particle and pair correlations are satisfac-
torily reproduced by the ab initio fit in the disordered
phase, but both simple segment models fail: the DLVO
theory because of the high rod concentration, and the
PBC model since an infinite cylindrical cell is not an ade-

quate description for the fluid phase of relatively short
rods.

Ab initio simulations for long rods become increasingly
diScult since one needs a large system size to avoid
finite-size effects. As the whole counterion density has to
be stored and moved, one rapidly reaches the limitations
of present-day computers. Inspired by the success of the
ab initio fit and keeping in mind that the optimal Yu-
kawa parameters do not strongly depend on system size,
an ab initio simulation of one smectic layer of /V„=9 long
rods with N, =52, L = 1664 nm, R =37 nm, z =2.9e
nm ', p„=45.8/L, IIi=0.07 was performed in a rec-
tangular simulational box with periodic boundary condi-
tions (run 8). The rod area density in the smectic layer
was 0.026/R . A line charge density z and an inverse

screening length tc* were fitted as optimal Yukawa pa-
rameters. In order to visualize the different interactions,
the forces per unit length between two infinitely long
parallel rods are shown in Fig. 2 as a function of the rod

separation. These forces which are proportional to
f(r) =z* x Ki(tr*r)/e essentially govern the MD equa-
tions and are thus a direct measure of the structural order
in the rod suspension. The DLVO theory strongly un-

derestimates the interaction but the PBC model yields

fairly good agreement for any relevant rod separation.
Furthermore, standard MD simulations with N, =144

rods (4 smectic layers with 36 rods) were performed us-

ing the different Yukawa segment models. The system
was in the crystalline phase. As summarized in Table I,
fluctuations in the orientations defined via gQ =1
—(Qj), the Lindemann parameter L (i.e., the root-
mean-square displacement in the 2D layer measured in

terms of the triangular lattice constant az) as well as the
mean force and torque were calculated. Again, the PBC
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FIG. 1. Orientational pair correlation function gp(r) versus
center-of-mass separation r measured in terms of the mean dis-
tance a p, 't3 for run A: ab initio data (solid line), ab initio fit

(dashed), DLVO theory (dot-dashed), and PBC model (dot-
ted).

FIG. 2. Force f(r) between two infinitely long parallel rods

as a function of the rod distance r for run 8 within three
different Yukawa segment models: ab initio fit (dashed line),
the DLVO (dot-dashed), and the PBC segment model (dotted).
The distance r is measured in units of the triangular lattice con-
stant a~. f(t) is measured in units of f(at, ) of the ab initio fit

data. The most relevant distance for the interaction is r=a~.
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model yields fairly good agreement with the ab initio fit

data.
ln conclusion, based on an ab initio calculation, an

interaction-site model with Yukawa point charges along
the rods was justified as a simple picture for the interac-
tion between charged rodlike colloidal particles. I n

phases where the rods are at least partially aligned (like
crystals, columnars, smectics, and nematics), a simple ex-
actly soluble PBC model makes reasonable predictions
for the Yukawa parameters while the DLVO theory fails
for such strongly interacting systems. This should
motivate a detailed theoretical study of the Yukawa seg-
ment model involving computer simulation or density
functional theory of freezing in order to predict qualita-
tively and quantitatively the phase diagram, e.g., of a
TM%' suspension. As a final comment, also dynamical
properties can be addressed by combining the ab initio
approach with Brownian dynamics for the rods.
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