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Zero-Temperature Quantum Phase Transition of a Two-Dimensional Ising Spin Glass
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We study the quantum transition at T =0 in the spin- —,
'

Ising spin glass in a transverse field in two di-

mensions. The world line path integral representation of this model corresponds to an effective classical
system in 2+1 dimensions, which we study by Monte Carlo simulations. Values of the critical exponents
are estimated by a finite-size scaling analysis. We find that the dynamical exponent, z, and the correla-
tion length exponent, v, are given by =1.5+ 0.05 and v=1.0~0.1. Both the linear and nonlinear sus-

ceptibility are found to diverge at the critical point.
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Much attention has been given to the ftnite tempera-
ture transition in spin glass systems, see, e.g. , [1], and

reasonable agreement between theory and experiment has

been obtained. This transition is driven by therma/ fluc-

tuations controlled by the temperature. However, one

can also control the strength of quantum fluctuations by

altering parameters in the system. Turning up the quan-

turn fluctuations will decrease the transition temperature

T„, eventually forcing it to zero. Critical fluctuations

near the transition are classical as long as T, & 0, because

they occur at a frequency to satisfying hto«kttT [2].
Consequently, the universality class is that of the classical
problem except if one tunes through the transition at
T=O. This quantum universality class has not been

much studied for the spin glass problem, though other
quantum phase transitions, such as the metal-insulator

[3] and Bose-glass [4] transitions, have attracted a lot of
attention. Most theoretical work on the quantum spin

glass [5,6] has been confined to the infinite range model,
which is expected to describe the transition in a short

range system of sufficiently high space dimension.
Recently, however, the quantum spin glass transition

was studied experimentally [71 in an Ising system with di-

polar couplings in which T, was driven to zero by apply-
ing an eA'ective transverse field. Interestingly, the non-

linear susceptibility, g„i, which diverges at the finite-T
classical transition [I], was found not to diverge, or at
least to diverge much less strongly than in the classical
case. Furthermore, the phase transition in a quantum Is-

ing spin system in 1+1 dimensions has recently been
studied in detail [8]; see also [9]. It is found that both
the linear and nonlinear susceptibility diverge not only at
the critical point but also in part of the disordered phase.
Although this model does not have frustration, and there-
fore might miss some of the spin glass physics, it is in-

teresting to investigate whether similar behavior also
occurs in higher dimensions. It is therefore an appropri-
ate time to study the quantum Ising spin glass and here
we report on results of Monte Carlo simulations on a
short range model in 2+1 dimensions. Similar calcula-

tions and analysis have also been performed in 3+1 di-

mensions [10].
The model system studied in this paper, which is ap-

propriate for the experimental system, LiHo„Y| —„F4 [7],
is the Ising spin glass in a transverse field with Hamil-

tonian

where the o; are Pauli spin matrices, I is the strength of
the transverse field and the nearest neighbor interactions,
and Jtl are independent random variables with a Gauss-
ian distribution of mean zero and standard deviation uni-

ty.
If I 0, the Hamiltonian in (I) is the classical two-

dimensional Ising spin glass. The ground state is doubly
degenerate (the two states being related by global spin-

flip symmetry) so, at T=0, the Edwards-Anderson (EA)
order parameter [I] qaA =[(cr,') ],„ is unity. We denote a
statistical mechanics average by angular brackets, (. ),
and an average over the quenched disorder by square
brackets, [ . . 1„. Switching on the transverse field

mixes the eigenstates of a' and thus diminishes the EA
order parameter, causing it to vanish at some finite value,

I,. This is the transition that we study here. Details of
the calculations will be given elsewhere [11].

It is well known [12] that the ground state energy of
the d-dimensional quantum mechanical model (I ) is

equal to the free energy of a (d+ I)-dimensional classical
model, where the extra dimension corresponds to imagi-

nary time, i.e.,

E(T=O) . T T ttH I 1
T g= lim Tre Tre

Id T 0 Id g~ I I d

(2)

where the imaginary time direction has been divided into

L, time slices of width hr (brL, =P), and the effective
classical action, S, is given by

4'= —g QK~lS;(r)St(r) —g QKS;(r)S;(r+1), (3)
r &ij & I
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where the S;(r) = ~ I are classical Ising spins, the in-

dices i and j run over the sites of the original d-
dimensional lattice, and r =1,2, . . . , L, denotes a time
slice. In Eq. (3), K;& =/3, r J~ and exp( —2K)
=tanh(farl ). Note that we have the same random in-

teractions in each time slice. We should take the limit

hr 0, which implies K,z 0 and K ~. This ex-
tremely anisotropic limit is inconvenient for calculations
but universal properties are expected to be independent of
h, r so we take h, r =1 and set the standard deviation of
the K;~ to equal K. Thus K, which physically sets the rel-
ative strength of the transverse field and exchange terms
in (I), is like an inverse "temperature" for the effective
classical model in (3).

We study the model (3) in d=2 dimensions by Monte
Carlo simulations on a simple cubic lattice of size
L x L & L, using periodic boundary conditions. Since vari-

ous quantities of interest show a very strong dependence
on the disorder realization, we have to average over a

large number of samples —we took 2560 samples for each
temperature and size. The largest systems were 20x20
x 50, where we used up to 10 Monte Carlo sweeps for
equilibration plus 10 sweeps for measurements, which
were performed every 20 sweeps. Equilibration was

checked with standard methods [13]. The simulations
were performed on a large transputer array (GCell024
from Parsytec).

Because the system in (3) is very anisotropic, it is ex-
pected to have two different diverging scales: one is the
correlation length in the space direction, g-8 ', where

8=K„/K —
I is the distance from the critical point K„

and the other is the correlation time, g„ in the (imagi-
nary) time direction, where g, -( with z the dynamical
exponent. According to a finite-size scaling hypothesis
extended to anisotropic systems [14], various thermo-
dynamic quantities close to the critical point depend on

two independent scaling variables, which we can take to
be bL ' ' and the aspect ratio L,/L'. The scaling analysis
is straightforward only if it depends on a single parame-
ter, so it is necessary to fix the aspect ratio. Since z is un-

known, one has to scan several difTerent sample shapes to
see which choice for = scales best, and we follow an
efficiency method of doing this suggested by Huse [15].

As in standard spin glass theory [I], we define the over-
lap between the configurations of two replicas, 1 and 2,
with the same disorder as

and for each disorder realization we calculate the dimen-
sionless combination of moments

g„.„(K,L,L, ) =g„„(SL"",L,/L-), (6)

and has the property [13] that it vanishes in the disor-
dered phase for L ~, and tends to a finite value in the
ordered phase. Consequently, g(x,y) vanishes at fixed x
both for J 0 (where the system is a classical two-

dimensional spin glass at finite "temperature, '"
which is

disordered) as well as for y —.~ (where the system is

effectively a long one-dimensional chain along the
direction, which is also disordered). Hence, g(x,y) must

have a maximum at some value of J for fixed x. The
value of this maximum decreases with increasing L in the
disordered phase K (K„(where 8'=K„/K —I & 0) and

increases with increasing L in the ordered phase. We use

this criterion to estimate the critical coupling which we

find is given by K; ' =3275+ 0025. The data are
shown in Fig. 1. Furthermore, at the critical point, the
values of L and L, for which g is a maximum are related

by L, -L . By this method we determine the dynamical
exponent and get z =1.50+ 0.05. The finite-size scaling
hypothesis (6) can be checked a posteriori by a scaling

plot for g„., at K, as shown in Fig. 2.
Systems with fixed aspect ratio, L,/L', can be used

then to determine critical exponents via the usual one-

g =0 5[3 —&g')/(g')']

The disorder averaged quantity, g.„„=[g]„.„[16],obeys
the finite-size scaling form

K i= 3.20
' I

K ~= 330 K i=340
' I
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FIG. 1. The averaged cumulant g„(k,L,L, ) for three diA'erent coupling constants [K ' 3.20 (left), K ' =3.30 (middle), and

K ' 3.40 (right)I and various system sizes [L 4 (0), L 6 (+), L =8 (c3), L =12 (x), and L =16 (&)] as a function of L, The.
maximum increases with L for K '=3.20, which implies K, ') 3.20, and it decreases with increasing L for K '=3.40, so
K ' &3.40. We also have data for K ' 3.25, from which we conclude that K, ' is between 3.25 and 3.30. The error bars are
smaller than the symbols.
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FIG. 2. A scaling plot of g„(K,L,L, ) at K '=3.30=K, '

as a function of the scaled system size in the (imaginary) time
direction L,/L, '". For each lattice size, L~'" is chosen so that
all the data collapse onto a single curve. The sizes are L=4
(0), L 6 (+), L 8 (0), L 12 (x), and L 16 (0). The
inset shows the dependence of L, "'" as a function of L. From
Eq. (6) the slope is equal to the dynamical exponent z and a fit

gives = 1.50 ~ 0.05.

parameter finite-size scaling. First of all, from Eq. (6)
the derivative of g with respect to K at K, gives v and we

find v=1.0~0.1; see Fig. 3. The rigorous inequality
v~ 2/d [17] is therefore satisfied, perhaps as an equality.

There are various susceptibilities that one can define
for this problem, with different numbers of integrations
over imaginary time. For example, the second moment of
Q, gg =L L, [(g )].,„, has a single integral over r. De-

fining the exponent yg by gg-8 "~, then, at the critical
point, the size dependence is given by gg-L " where
yg=(2 —Il)v. On the other hand, the equal time spin
glass correlation function, Cp=g;[(S;,(rp)S;(rp)) ].,„,
has no r sum and so varies as L " ' [18]. Consider
next the overlap

q'= g S'(r )S (r )
1

LJL2 / t / 2

which involves a double sum over r The corres. ponding
susceptibility, @~=L L, [((q' ) )]„.„, involves tvvo time
integrals so it should vary as L "+' at criticality [18].
The experimentally measured nonlinear susceptibility is
the fourth derivative of the free energy with respect to a
field coupling to 5', and so is related to the fourth order
cumulant of the total magnetization by standard linear
response theory, g„I =[(M ) —3(M ) ],. „/L L„where M
=g;,S;(r ). Since the disorder average gives zero unless
each spin occurs an even number of times, g„~ can be ex-
pressed (neglecting a local piece which diverges less
strongly) as

g I L[((q I 2)2)((q I I q22)2)]

which has three sums over r and so should diverge at cri-
ticality like L "+ = [18]. Figure 4 shows data and fits
for Cp, g&, gg, and g„~ at criticality. All the data are con-

FIG. 3. The derivative of g,, with respect to K ' at
K ' =3 30=K, ', for systems of size 4x4x4, 6x6x8,
8x8x14, 12x12x24, and 16x16x34, which have a roughly
constant aspect ratio, L,/L*, since = =1.5. A least squares fit of
the data by a straight line yields a slope of 1/v=1.0+'0. 1.

sistent with the exponent values, g=0.5, z=1.5. In par-
ticular, g„~-L at criticality, or equivalently g„~-L,'
using z= 1.5. Since L, Ix'p, g„i varies as T ' for T 0
at the critical transverse field I „which is quite a strong
divergence. Note that, by contrast, the equal time corre-
lation function does not diverge (or only does so margin-
ally). This is because spatial correlations fall off quite
rapidly at criticality, like r, as we have verified direct-
ly.

According to scaling theory [4], the (unsquared) on-
site correlation function at the critical point C(r )
=[(S;(0)S;(r))]„.„varies as r +- +"1/', or r / us-

ing our values for the exponents. Integrating this over r
to get the uniform susceptibility, gF [19], gp =Q,C(r),
one finds a divergence of the form L,', or gF —T ' as
T 0 at I =I,. Thus, in contrast to the classical spin

10'

104
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FIG. 4. The equal time correlation function Co and the sus-
ceptibilities Zg, Zq, and g„~ as a function of L close to the critical
point, K '=3.30=K, ', on a double logarithmic plot. The
slopes are expected to be 2 —

g
—z, 2 —g, 2 —g+ z, and

2 —q+2z, respectively. A least squares fit gives the values
0.2+ 0.1, 1.4+ 0.1, 3. 1 ~0.1, and 4.7+ 0.2, which are con-
sistent with the exponents, g=0.5, z=l.5. The system sizes
are the same as in Fig. 3.

4143



YOLUME 72, NUMBER 26 P H YSICA L R EV I EW LETTERS 27 JUXE 1994

glass [I], the uniform susceptibility diverges at the quan-
tum spin glass transition in 2+1 dimensions.

Similar calculations and analysis have been performed
on a (3+ I)-dimensional model [10], with results which
are quite similar to ours, though the numerical values for
exponents are somewhat different as expected. The main
qualitative difference is that the uniform susceptibility
does not diverge in 3+1 dimensions. Both our work and
the results in 3+ 1 dimensions [10] show a substantial
divergence of g„~, which appears to be rather different
from experiment [7]. The reason for this discrepancy is

unclear at present. For future work it will be interesting
to investigate whether the uniform and spin glass suscep-
tibilities diverge in part of the disordered phase, as hap-
pens in d= 1+ I because of Grif]]ths singularities arising
from rare regions which are more strongly coupled than
the average [8].
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