
VOLUME 72, NUMBER 26 P H YSICA L R EV I EW LETTERS 27 JUNE 1994
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We present results of a Monte Carlo simulation study of the zero-temperature quantum phase transi-
tion of a three-dimensional short-range spin- —,

'
Ising spin glass, driven by a transverse magnetic field.

This quantum transition is equivalent to the finite-temperature transition in the (3+1 )-dimensional an-
isotropic classical random Ising model that is the path integral of the quantum system. The critical ex-
ponents are estimated using a finite-size scaling analysis. The uniform linear susceptibility is finite at the
transition, while the nonlinear susceptibility diverges. The results are more consistent with conventional,
rather than activated, dynamic scaling in the quantum system.

PACS numbers: 75.10.Nr, 05.30.—d, 75.40.Cx, 75.40.Mg

Spin glasses have been the subject of experimental and
theoretical investigations for almost two decades [I]. In

high spatial dimension, d, they undergo a phase transition
from a paramagnetic phase at high temperature, T, to a
spin-glass ordered phase at low T. The ordered phase has
long-range magnetic order, but in a random pattern
chosen by the details of the spin-spin interaction in that
particular sample of spin glass. For dimensions below the
lower critical dimension (which is near d =3 for classical
Ising spin glasses [2,3]), the ordered phase is confined to
T =0, being unstable to thermal fluctuations.

The transition from a spin-glass phase to a paramag-
netic phase can alternatively occur at zero temperature
due to increasing quantum fluctuations [4]. This T=O
quantum phase transition has been investigated recently
for Ising spin glasses in one dimension [5,6], as well as
with infinite-range interactions [7-9]. A number of novel

features have been discovered: For example, one obtains
divergent susceptibilities in the paramagnetic phase in the
case of d=l, whereas no such behavior is seen in the
infinite range case. Besides the obvious issue of what

happens in finite dimensions d & I, with realistic (range-
dependent) interactions between spins, such systems are
also of experimental interest. Recent experiments [10]
have found substantial changes in the spin-glass critical
behavior of the dipolar Ising system LiHo Y1 —„F4 with

increasing transverse magnetic field.
In this Letter, we present results of Monte Carlo simu-

lations of the nearest neighbor Ising spin glass on a sim-
ple cubic (d=3) lattice in a transverse magnetic field,
characterized by the Hamiltonian

where a is the a component of a spin- 2 spin operator at
site i, and the Jz are nearest neighbor interactions chosen
to be independent quenched Gaussian random variables
with zero mean and unit variance. Application of a mag-
netic field, I, transverse to the Ising (z) axis causes mix-
ing of the eigenstates of the z components of the spins.
At T =0 this system exhibits a continuous phase transi-

tion from a spin-glass ordered phase at small transverse
fields to a paramagnetic phase for suSciently large trans-
verse fields. We have studied the critical scaling behavior
at this transition, finding results consistent with conven-

tional dynamic scaling with dynamic critical exponent
z =1.3, as opposed to the activated dynamic scaling that
applies for d =1. The uniform magnetic susceptibility is

found to be finite at the transition, in contrast to both
d = I and d =2 where it diverges [6,11]. The other criti-
cal exponents are also estimated.

We use the Suzuki-Trotter [12] formalism to map the
T=O quantum mechanical problem given by the Hamil-
tonian above, into a classical statistical mechanical sys-
tem in 3+I dimensions with the Hamiltonian

(2)

where the S;(r)=+ 1 are now classical Ising spins, rep-
resenting the z component of the quantum spins at imagi-
nary time r. To precisely reproduce the ground state of
the above quantum Hamiltonian [Eq. (1)], the limits
8 and A 0 must be taken in the appropriate
fashion [12]. However, the universal properties of the
phase transition are the same for finite, positive 3 and 8
as in this limit for both d=1 and the infinite-range mod-
el. This should be true quite generally, since the univer-
sal properties (i.e., critical exponents and scaling func-
tions) do not depend on the short-length-scale details of
the model. Thus for computational convenience we have
simulated the case A =1, 8 =1, with r taking on only in-

teger values. This (3+I)-dimensional classical system or-
ders at low temperatures into a phase with spin-glass or-
der in the three "spatial" directions and ferromagnetic
order at each site in the imaginary time (r) direction.
This low-temperature ordered phase of the classical sys-
tem (2) corresponds directly to the low-transverse-field
ordered phase of the quantum system (I) at zero temper-
ature. Increasing the temperature in the classical system
is equivalent to increasing the transverse field in the
quantum system, and leads to a phase transition to the
paramagnetic phase. In the following we will discuss the
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behatior of the classical system (2) as a function of its
temperature; this corresponds directly to the behatior of
Ihe zero te-mperature quantum system (i) as a function
of the tran. cverse fteld

It has been found in dealing with classical spin models
that finite-size scaling affords the most economical way of
obtaining the critical behavior of the infinite-size system
[I3]. However, unlike isotropic models where the scaling
is done equally for all dimensions that are being scaled,
our model is anisotropic, and therefore the "space" and"r"directions will not scale in the same fashion. In fact,
one expects that near the critical point the correlation
length in the r direction g„scales as a power of the
correlation length in the space directions, (, so that

g, -(=, where z is the dynamical critical exponent for the
quantum system. In the absence of any information
about z, we had to study the behavior as a function of the
temperature and two finite sizes, the spatial size, L, and
the size L, in the imaginary time direction. Conventional
dynamic scaling then says that dimensionless quantities
should scale as functions of two variables: the scaled
shape, L,/L', and the scaled size, L/g, where g is the spa-
tial correlation length in the infinite system. We have
used periodic boundary conditions in both the space and

imaginary time directions. The number of independent
samples simulated ranges from 1024 for L =4 and L, =6
to 144 for L =10 and L, =20, requiring up to 2.5x10
Monte Carlo steps for equilibration and measurement.

As has been demonstrated for classical spin glasses, a

very useful quantity to measure to determine the critical
exponents is the overlap between two independent copies
("replicas" ) of the same spin-glass sample:

where g is a universal scaling function of its t~~o vari-

ables. If we fix L and T, we find g has a maximum as a

function of L, . This occurs because for finite I and large

L, we have effectively a one-dimensional system which

must have a finite correlation length along the r direction
and when L, exceeds this correlation length g scales to
zero as argued above. On the other hand, for T near

T, , large L and small L, we effectively have a three-
dimensional system, which is well above its transition, so

again g scales to zero. [T„(L,) decreases with decreasing
L„and we are only trying to locate and study the transi-
tion in the large L, limit of the (3+I)-dimensional sys-

tem. ] Using this maximum in g, we can readily locate
T„since it is only at T, where this maximum value of g
is independent of L. This behavior of g is illustrated
schematically at the top of Fig. l. We have found this

procedure to be superior to more conventional procedures
such as looking for the power-law decay of correlation
functions, because the latter are significantly corrupted

by finite-size effects.
Using the procedure described above, we find T,. =-4.3

for our classical model. At T, , L/( =0, so from Eq. (5),
g then depends only on the scaled shape L,/L=. We find

that z= 1.3 causes the data for g(L, L„T=4.3) to col-

lapse best onto a single scaling curve. The resulting scal-

ing plot is shown in Fig. I. (Note that the maximum in g
is actually very near L, =L".) If this critical point were

to have activated rather than conventional dynamic scal-

ing, one would expect the peaks in g to grow broader with

increasing L, when plotted on a logarithmic scale as in

q =ggS, '(r )S,'(r)/L'L, (3)

f

L3)L2) Lg,

h It

L. ---- L8" 1

Here the superscript on the spin indicates the replica.
Each replica has the same bonds J;~, but is simulated

with independent random initial conditions and indepen-

dent heat baths at the same T. From q one can construct

a dimensionless spin-glass coupling constant [2]

g(L, L„T)=[3—(q )/(q ) ]„„/2, (4)

g =g (L/g, L,/L'), (s)

~here the angular brackets denote a thermal average for

a given realization of the random couplings J;~, while

[ ]„.„denotes an average over such realizations. In a

disordered phase for samples large compared to the corre-

lation lengths, the overlap is a sum of many independent

random local overlaps, so has a Gaussian distribution

around q =0 and g then vanishes. In the ordered phase

the overlap (spin-glass order parameter) acquires a non-

zero value. If there is only one magnetization pattern

that the system is ordering into then the magnitude of the

overlap does not fluctuate in the limit of a large system

and g = l. Near the critical point, g crosses over between

these limiting values and should scale as
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FIG. I. Scaling of the coupling constant g [Eq. (4}]as sam-

ple size and shape are varied. Top plots schematically show the

behavior below, at, and above T,. The main graph sho~s the

actual g, computed as a function of the scaled sample shape at

T,. The dynamic exponent z=—l.3 and T,=4.3 are chosen for

the best collapse of the data for diA'erent sizes onto one curve in

this plot.
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FIG. 2. The coupling constant, g, vs temperature for the
scaled sample shape determined by the maximum of g in Fig. l.
The crossing indicates T,. The inset shows the best collapse of
these data onto one scaling curve.

Fig. 1. There is no sign of such a broadening, so we con-
clude that these data are more consistent with conven-
tional, rather than activated, dynamic scaling.

Having determined z, we can fix the scaled shape and
study the dependence of g on the scaled size L/g. We fix

the scaled shape to be near the maximum of g vs L, in or-
der to be insensitive to slight errors in our estimate of z,
or to the rounding error because of the requirement that
both L and L, are integers. The results for g vs T at each
L are shown in Fig. 2. The intersection of the curves pin-
points the critical point T„which is seen to be close to
4.3 and is consistent with the earlier result from scaling
of g. The inset in Fig. 2 is the scaling plot of the same
data, with the temperature axis scaled, assuming, as usu-

al, (-(T—T, (
". The best collapse of the scaled data

onto one curve occurs with correlation length exponent
I/v=1. 3. Small systematic corrections to finite-size scal-
ing can be seen in Figs. 1 and 2, in that the apparent T,
moves slightly higher when one examines larger samples
[14]. Thus the true T„may be somewhat higher than 4.3,
and the effective exponents obtained from the length
scales we study may differ a little from the true asymp-
totic critical exponents.

A striking result for the (I+I)-dimensional quantum
Ising spin glass [6] is that the zero-temperature linear
susceptibility to a uniform magnetic field oriented along
the Ising axis is divergent due to Gri%ths singularities in

part of the paramagnetic phase, as well as at the critical
point. For our (3+1)-dimensional system, on the other
hand, this uniform linear susceptibility is finite even at
the critical point. This susceptibility is proportional to

(6)

and is hence finite if the average spin-spin correlation
falls off with imaginary time faster than I/r. This corre-

lation is shown in Fig. 3 for T=4.3=-T,. The decay is
clearly faster than 1/r; from r =2 to 8 the best fit is—J3

The nonlinear susceptibility is the divergent quantity at
the transition that is experimentally accessible. It is pro-
portional to the fourth cumulant of the total magnetiza-
tion of the classical model:

g„)=[(M ) —3(M )'] „/L'L, , (7)

where M =g; g, S; (r ). Noting that terms containing an
odd number of spins at any given spatial site vanish after

n
elo0
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FIG. 4. Log-log plot of the nonlinear susceptibility and L,
times the spin-glass susceptibility vs sample size at the transi-
tion (for the "standard" scaled shapes used in Fig. 2). The
slopes on this plot are identical, as expected from scaling, and
equal to 2+2z —@=3.5.

FIG. 3. Log-log plot of the imaginary time correlation func-
tion vs r at the transition. The dashed line represents the power
law l/r on this plot. The autocorrelation function decays
significantly faster than l/r, so its sum on r, which is propor-
tional to the uniform linear susceptibility [Eq. (6)l, is finite.
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doing the sample average, this expression becomes

3 gm; —3 g&m; &
—2+&m; &

l l

+ 6 y &m &' —6&Q,', &

JV

(8)

where m; =Q, S;(r) and Q„, =g;m m; -The results of
g„i for T =4.3= T,. are sho~n in Fig. 4. g„~ is expected to
scale as

g„i—L + = "X(L/g, L,/L=), (9)

Since g,z involves two fewer sums over T: than g„1, its ex-

pected scaling form is

g,s —L "Y(L/g, L,/L") .

We have confirmed this scaling for our "standard" scaled
shape at and near T„. Figure 4 shows the results at T,
For fixed scaled shape at T„scaling says that g„l and g,.s
should diAer by a multiplicative factor proportional to
L, . That this is true is demonstrated in Fig. 4, where the

slopes on the log-log plot are indistinguishable.
In conclusion, we have studied the critical properties of

the zero-temperature quantum phase transition of a
three-dimensional short-range Ising spin-glass model, via

a finite-size Monte Carlo simulation study of its classical
counterpart. Our results are consistent with conventional
dynamic scaling, with critical exponents z = 1.3, I/v

where X(x,y) is a scaling function. The results in Fig. 4
are for T, at fixed scaled shape, so the slope on the log-
log plot indicates 2+2z —g=-3.5 or g=-0.9. Returning
to the original quantum system (I), this scaling implies
that if one sits at the critical transverse field, I, , and
varies the temperature (now of the quantum system), the
nonlinear susceptibility diverges as one approaches this
zero-temperature critical point as g„~-T " = =. The
power-law exponent (=2.7) is close to that obtained [13]
for classical Ising spin glass (y=2.9). There are two

possibilities for the dependence on the transverse field, I,
near the critical point at T=O: If the GriSths singulari-
ties are strong enough, g„~ is already divergent in

the paramagnetic phase, as occurs in one dimension.
If, on the other hand, g„| is finite for I near but above
I „, then the critical divergence should be as g„i-(I
—I „)"" ' . We do not yet have a good estimate of
the strength of the Grifliths singularities, except to say
that they are weak enough that the uniform linear sus-

ceptibility remains finite.
We have also examined the "spin-glass susceptibility"

(10)

=1.3, and g=0.9. The dynamic exponent is expected to
be = =2 above the upper critical dimension [9], while it is
infinite (activated dynamic scaling) for d = I [6], so it is

apparently nonmonotonic vs d. Our scaling results are
very similar (albeit with somewhat dilYerent exponents, as
expected) to those of Rieger and Young [11] who have
been studying a two-dimensional system. The one dif-
ference is that the strong divergence of the uniform linear
susceptibility that occurs for d = I [6] is still present I'or
d=2 [I I] but is gone for d=3. We are currently study-
ing the efl'ects due to rare regions (GriSths singularities)
near the critical point in the disordered phase. A second
issue requiring further investigation is the reason for the
much weaker divergence of the nonlinear susceptibility
seen in the experiments on LiHo, - Yi —,-F4.
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