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Coulomb Energy of a Quasi-2D Electron Gas in a Quantum Well
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%e calculate the Hartree, exchange and correlation energies of a quasi-2D electron gas in doped
semiconductor quantum wells, using an expansion in Coulomb interaction. This expansion, also valid

for the Hartree term in usual experimental situations, allows one to obtain the analytical well width

dependence of the energies. %e find that the finite width corrections to the exact 2D exchange-
correlation energy are quite often as large as the Hartree contributions.

PACS numbers: 73.20.Dx

In the past decade, a large amount of work has been
devoted to the study of quasi-two-dimensional electron
gas appearing in semiconductor quantum wells, multiple
quantum wells, and superlattices. Many-body effects in
these quasi-2D systems are usually investigated via the
local density approximation [1—7]. In this formalism,
the Hartree energy is calculated exactly through the
self-consistent resolution of coupled Schrodinger-Poisson
equations, while the exchange-correlation contribution is
treated in an approximate way: The corresponding many-
body effects which are inherently nonlocal, are included
as a one particle potential which depends on the local
value of the density only. It is usually considered valid
only for density variations small on the scale of the
Wigner-Seitz radius [1,8], a condition obviously violated
in quantum wells. For these structures, another treatment
of many-body effects is thus necessary [8—12].

In this Letter, we present a new approach to the
quasi-2D electron gas energy, in which the exchange-
correlation contribution is treated in the same way as
the Hartree part. It is based on a perturbative treatment
[13,14] of the Coulomb interaction similar to the one
used for 3D and exact 2D electron gases. This approach,
which has been shown to be very accurate for the Hartree
energy [15] in usual cases (electrons in the lowest
subband only and well width smaller than the Bohr
radius), allows a very standard calculation of the
exchange-correlation energy and has the advantage of
giving the analytical well width dependence of all terms.
%'e find that the finite width corrections to the exact
2D exchange-correlation energy are quite often as large
as the Hartree energy, which means that these two
contributions must be placed on the same footing.

A finite well width induces two kinds of effects when

compared to the exact 2D limit: (i) the usual Coulomb
interaction (associated with finite momentum transfer
processes) depends on the well width via a form factor;
and (ii) new zero momentum transfer processes appear,
which give rise to the Hartree energy [15],and also play
a role in the exchange-correlation terms, due to mixed

q + 0 and q = Oprocesses.
The physics of quasi-2D electron gas is controlled by

two dimensionless parameters, r, and A. The first one
is related to the 2D electron density n, = N/S = K2/2m. ,
through the relation n, n r2ap = 1, ap = fi2/me2 being
the Bohr radius. The other parameter is related to the
well width and can be taken [16] as A = (2n) Ka. A
Coulomb expansion of the energy implies, as usual, r, & 1.
For electrons in the lowest subband only (e& + ex & e2
with eg = A2K2/2m and e„= nzfi2m. /2rna2), we have
A & Ap = +3/2, i.e., a/ap & ~J3/2r, ACo. ulomb ex-
pansion of the energy for electrons in the lowest subband
thus corresponds to 0.26a/ap & r, & 1 (this restricts the
well width to be at most of the order of the Bohr radius).
Note that a perturbative expansion of the energy could be
performed for smaller r„ i.e., for electrons in more than
one subband. However, this raises new problems which
are beyond the scope of this Letter.

Let us consider a system composed of electrons con-
fined in a well with infinitely high barriers, and ions with
density n, p;(z) located inside or outside the electron layer.
The total electron-electron, ion-ion, and electron-ion inter-
action can be split into two parts corresponding to excita-
tions with zero and nonzero momentum transfers. The
first part, which induces the Hartree processes, reads [15]
in terms of a„z creation operators for free electrons in
the nth subband
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where qr„(z) = (2/a) sin(nvrz/a) for 0 ~ z ~ a. The diagonal terms W„„„„depend essentially on the electron-ion
separation and are large for electrons and ions far apart. The other terms depend on the ion configuration only (ions
located inside, on one side or on both sides of the electron layer).

The Coulomb interaction with nonzero momentum transfers reads

qgo 1 ~ 277e t tz
"1" "2"2

k 1 k2 al o'2 (2)

V..., ,..., (Q) = dz1 dz2 exp[ —2~Q Izl z2l /a]V „",(zi)q. ,(z1)y„*,(z2)p. ',(z2) .

The form factor V„,„,„,„,(0) reduces to 8„,„,8„,„, while
for small Q, its nondiagonal part vanishes as Q.

The quasi-2D electron gas Coulomb energy is obtained
as aperturbative expansion in Vc,„~ = Vq" + Vq=', gen-
erating terms in [V't~o)" [V't=o]". The Hartree energy cor-
responds to all terms with n = 0 and p ~ 1. By anal-

ogy with the exact 2D case, we call "exchange energy"
the sum of terms with n = 1 and p ~ 0, the correlation
energy including all the other terms (n ~ 2 and p ~ 0).
We now calculate the main contributions to these ener-
gies in the small r, limit, in order to assess their relative
importance.

(1) The Hartree energy which results from charge
separation is controlled [15,16] by a dimensionless pa-
rameter which must vanish with a, n„and e2, namely
AH = K2a3/n ao = (4+2/m) r, A3. Its Coulomb expan-
sion thus appears as a small AH expansion. The two low-
est order terms [diagrams (Hi) and (H2) of Fig. 1] read

= &0(V'='l0&+ g l&MI V'='Io)l'/(Eo —E )
MOO
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d Qid Q2
I

Ql&~ Q2&]

(4)

the electrostatic energy necessary to separate electrons
from ions. The other part, as well as bH, depends on the
ion configuration, and is associated with the deformation
of the electron distribution in the electron-ion field.
These coefficients are given in Table I, for three typical
ion configurations: The "in" case corresponds to ions
uniformly distributed inside the electron layer, the "out
1" and "out 2" cases to ions uniformly distributed in one
or two adjacent layers of width a or a/2.

Note that for electrons in the lowest subband only
(AH 0.3a/ao), the AH term of EH [diagrams (H3) and

(H3)] is very small for usual well widths (a ~ ao).
(2) The exchange energy contains all terms in

V'1 o [V't=o]~ with p ~ 0. Its small r, leading term [14]
[diagram (Xo)] reads

= NRo[aHr, A —bH(r, A ) + O(r, A ) ]/r, A, (3)

where Ro = me4/252 is the Rydberg. A part of aH
depends on the electron-ion distance and corresponds to

For electrons in the lowest subband, Ax(A) decreases
from the exact 2D result [17] Ax(0) = 8v 2/3m =
1.200 to Ax(Ao) = 0.750.

The next term [diagram (X1)] is a inixed Hartree-
exchange term:

Ex, = g [&0IV'='IM)&~IV' 'Io) + c.c.]/(Eo —E ) = NR A'B (A),
MAO

11;1n ll;1n ( IQ1-Q21)
AIQ1 Q. l

Ql&& Q2~&

(5)

Bx (A) is a decreasing function of A which depends on the ion configuration via W11.1„(seeTable I).
Exchange contributions with two V

= [diagrams (X2), (X2), (X2')] are in r, For small A' s, the dom. inant one is in
WROr, A6.

The total exchange energy thus reads

Ex/NRo = —r, 'Ax(A) + A Bx(A) + 0 (r, ) .

(3) In the small r, limit, the leading contribution to the correlation energy contains two V'i~o only and is similar to
the second term of Eq. (3). We can divide it into two terms, "normal" and "anomalous. "

The normal term [diagrams (Co 2) and (Co 2)] corresponds to the usual direct and exchange second order correlation
terms, with possible intersubband transitions due to the Coulomb form factor:
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where fk = 8(K —k), is the step function. The intrasubband contribution (nl = n2 = 1) decreases from 8',"'"'(0) =
0.385 [18—20] to 8',"'"(Ap) = 0.124, while 8,'"t"(A) is nearly constant (-0.04 for 0 + A ( Ap), so that the intersubband

contribution increases as A, but remains very small when compared to the intrasubband term.

The anomalous term [diagrams (Cp2)] does not exist in the exact 2D limit [21]. It also results from intersubband

processes and reads

t'2~e2&
y fktfa, fk, Vll;ln (& Iks —
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8;(A) decreases from 8;(0) = 0.080 to 8;(Ap) = 0.009.
The terms with two Vq~p and one Vq=p [like diagram

(Cl 2)] give a contribution in r, which is of the order of
NRpr A for small A' s. These terms have to be compared
to terms with three Vq~P, which are a priori of the
same order in r, Amo. ng them, the term corresponding
to diagram (Cp3) is singular in the small q limit. Its
singularity, removed by summing up all "ring" diagrams,
leads [18, 19] to a contribution of the order of NRpr, Inr,
instead of NRpr„as obtained from other (regular) terms
with three Vq~p [like diagram (Cp3)].

We thus find for the correlation energy leading terms

Ec/NRp = —[8"'"(A) + A 8"'"(A) + A 8'(A)]

+ O(r, Inr, ).

(4) From the above results, the Coulomb energy of a
quasi-2D electron gas can be written as

EH + Ex + Ec = NRp(1 [ 1.200 + A(A)]

+ [—0.385 + 8(A)] + 0 (r, Inr, )).

(10)
A(A) and B(A), shown in Fig. 2, are the corrections
induced by the finite well width to the first two terms
of the exact 20 energy. We now discuss the relative
importance of the various contributions to A(A) and B(A),
and make a few remarks on the discarded terms.

A(A), defined as

A(A) = aHA + [Ax(0) —Ax(A)] (11)
comes from Hartree and exchange first order terms. Its
largest contribution comes from the electrostatic energy
necessary to separate ions from electrons when the ions lie
outside the electron layer. The other Hartree contribution,
due to the deformation of the electron distribution, is of
the order of the well width effect on the exchange energy.

8(A), defined as

B(A) =gBin're(A) —A Bin'«(A)

—W'[b„—8„(x) + 8', (W)]

(12)

(Cp'2) (Cp2) (CD~) (Cl2) (CD3) (Cp 3)

TABLE I. Hartree coefficients aH and bH [cf. Eq. (3)] and
mixed Hartree-exchange coefficient Bx(A) [cf. Eq. (5)] for
three different ion configurations (see text).

FIG. 1. Hartrtw (H~), exchange (Xn), and direct (C"„), ex-
change (C' „), anomalous (C' „) correlation diagrams with
respectively zero, one, and n finite-momentum transfer interac-
tions (wavy lines) and p zero-momentum transfer interactions
(dotted lines). The (C03) diagram is a mixed direct-exchange
correlation diagram.

Ion Configu-
ration

in
"out 2"
"out 1"

0.225
4.087

12.973

bH

0.051
0.318
7.159

0.127
0.318
0.318

0.043
0.107
0.107



VOLUME 72, NUMBER 26 PH YS ICAL REVIEW LETTERS 27 JUNE 1994

A(X)
1

'out t

0.8-
I

I

06

0.4

0.2

0.3

0.1

Out 2

0.2
I

0.4

in

as an expansion in Coulomb interaction. We have shown
that, besides a mere electrostatic term which can be large
when the electron-ion distance is large, the Hartree en-

ergy is smaller than or of the order of the well width cor-
rections to the exact 2D exchange and correlation terms
(except when ions are all on one side of the electron layer
and the electron filling approaches the n = 2 subband).
Consequently, it is inconsistent to include the Hartree sec-
ond order term, or to calculate the Hartree energy self-
consistently as in the local density approximation, without
taking accurately into account the well width effect on the
exchange-correlation terms.

We wish to thank C. Benoit a la Guillaume and J.Y.
Vinet for useful discussions. Groupe de Physique des
Solides is CNRS URA 17.
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FIG. 2. A(A) and B(A) are the corrections to the exact
2D values of the first and second order Coulomb energy
terms. "in," "out 2," and "out 1" correspond to different ion
configurations (see text). The A dependence of the exchange
first order term Ax(A) is also shown. In the "out'* cases, A(A) is
dominated by a mere electrostatic Hartree term so that it varies
almost linearly. B(A) is dominated by the correlation term for
small A's and by the Hartree term for large A's in the "out 1"
case only.

with gB',~&'(A) = B',"&"(0) —B'"i"(A), comes from the
Hartree second order term, the mixed Hartree-exchange
term, and the second order correlation term composed
of intrasubband and intersubband direct and exchange
contributions plus the anomalous contribution.

For small A' s, B(A) is dominated by the intrasubband
direct and exchange correlation term AB',"'"(A) For.
A = Ao, this is still true when the ions are inside the
electron layer. When the ions are autside, the AOBx(AO)

Hartree-exchange term is roughly 0.2kB',""'(Ao). As for
the second order Hartree term, it is dominant when the
ions are all on one side of the electron layer, while it is of
the order of AB',""'(Ao) when the ions are on both sides.

The next term, in r, lnr„comes from the third order
"ring" diagram, screened by higher order ring contribu-
tions. All other third order terms are in r, . Among them,
the Hartree and mixed Hartree-exchange third order terms
are completely negligible even for intermediate A s since
they are in r, A and r, A, respectively.

In conclusion, we have calculated the Hartree, ex-
change and correlation energies of a quasi-2D electron gas
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