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Motivated by recent experiments on the nematic-isotropic transition in porous media, two simplified
models are proposed and studied using mean field theory and Monte Carlo simulations. The results are
in qualitative accord with those found in the experiments.
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Recently, the nematic ordering of liquid crystals con-
tained within a porous medium has been studied us-

ing light scattering and calorimetry measurements [1,2].
These experiments indicate that the first order transition
in the absence of the confining porous medium is replaced
by a smooth evolution to a glassy state in which the corre-
lation length does not exceed the characteristic pore size.
Even though the relaxation time was found to become
very large compared to experimentally accessible times,
no hysteresis was observed. Here, we study this prob-
lem theoretically —a range of models is considered and
studied using mean field theory enabling the determina-
tion of the simplest model that captures the physics of the
liquid crystal system. Our mean field studies are comple-
mented by Monte Carlo simulations in three dimensions
in order to eliminate certain spurious features of the mean
field analysis, to assess the effect of fluctuations, and to
study the dynamics. Taken together, mean field theory
and computer simulations for the model system yield re-
sults in good accord with experiment.

We associate the effects of the porous medium with
that of a random field [3]. Unlike conventional spins, the
director of a liquid crystal is a headless vector [1]—the
spin may be thought of as a rod with its orientation being
specified in a half sphere of orientational space.

We propose the Hamiltonian

H =H +H, =-Jg(S, S)' —gh, S, , (1)
(V& l

where S; is a n-component unit vector (in the liquid crys-
tal context n = 3) and the h s are independently chosen
quenched fields distributed according to a probability den-
sity P(~h~) which is rotationally invariant. The Hamilton-
ian Ho is variously called the Lebwohl-Lasher model [4],
the Maier-Saupe model [5] (in the context of liquid crys-
tals), and the RP" ' model [6] (in field theory) [7]. The
free energy of a generalized version of the Hamiltonian
in (1)

where x = (x p) is a symmetric, traceless n X n matrix,
whose equilibrium value is

ns s& —6 l

n —1

e '('") = d" 's exp 2 x p
p

ns s& —6 &

n —1

—1, is identical to the free energy of (1) for any arbitrary
set of (e;}. This follows from the local gauge invariance
of Hp. In other words, redefining e;s; = t;, and noting
that the trace over the s; variables is equivalent to the
trace over the t; variables and a; = 1, the free energy
is the same for each of the 2N sets of choices of (e;}
(N, here, denotes the number of sites). We exploit this

equality by tracing over the e; variables (since each of
the 2N partition functions are exactly equal, the individual

partition function is zN of this trace —this results in
a trivial contribution to the entropy) to show that our
coupling Hi is exactly equivalent to P; ln cosh(Ps; h;)
which is a special case of the generic form proposed by
Gingras [8] of g g; a (h; S;) . Thus, even though
our Hamiltonian (1) has an external field term coupled
linearly to the director, the symmetries of Hp make it
exactly equivalent to biquadratic and higher order even
couplings. (Note that this result obtains for any realization
of the disorder in h;.)

We will begin with the infinite range version of (1),

H = — g(S; SJ) —gh; S;. (3)
l,J 1

Generalizing the method of Schneider and Pytte [9], one
may rigorously prove that the free energy of (3) is given
by the minimum of

F = trx + —(V(x, h))h + (irrelevant constant), (4)2 1

H' = -1g(S, . S,)' —ge, h, - S,i,

where the a; are site variables that take on values +1 or

ail d

(V(x, h))g = f d" h P(h)V(x, h).
We will choose to measure 1/)8 and h in units of J.

(6)
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We now specialize to the case where only a fraction p
of the sites have field h = hph, i.e.,

V(x, h) = — gx ph h~2Pn
n 1

p

P(h) = (1 —p)8"(h) + p6(h —ho)C

F(P, 1 —p, x) = trx

+ (x independent terms) . (8)
1 —lr

~ $ where $ is the surface area of a unit (The conclusions of this paper are independent of whether

sphere in n-dimensional space. This choice corresponds the interaction with the external field is of the biquadratic

to the field being imposed on a fraction p of the sites — form or of the fom S; - h; as long as hp . The

the strength of the field is hp but its orientation is random. linear couPling is much easier to handle with'n mean field

With this choice (5) yields on further specializing to
—+ oop

On taking the quenched average (6) and noting that
trx = 0, one finds the simple result

1 —p ns s~ —6' ~( ln d" 's exp. 2P gx p
p n 1

=—(I —p) F(P(l —p), l, x/(1 —p)), (9)
where F(P, 1,M) is the free energy of the pure system

(p = 0). In this case, since M (or x) is symmetric, it can The o. 's point from the center to the vertices of a "tetra-
be diagonalized. If I is the axis of preferred orientation, hadron in n —1 dimensions. The random field distribu-
then tion is

with

ns s& —8 &

PtMaP = = ~aPmn (10) P(h;) = (1 —p)8(h;) + —g B(h; —o' ) .

Since

(l6)

m = Q for n =1 andm
7l 1

for u & 1 .

and

P (P) =P (0)(I —P) (12)

Q(P, 1 —P) = (I —P)Q((1 —P)/3, 1) (13)

It is immediately clear, physically, that relaxing the
condition hp ~ will only raise the transition tempera-
ture, but still lead to a first order phase transition at
nonzero temperature for all p 4 1. In the limit of infinite

range exchange, the depressed transition temperature
compared to the pure system may be readily understood
in terms of a fraction (1 —p) of the spins coupled
ferromagnetically to each other with the effect of the spins
with the hp ~ ~ field canceling out in the thermodynamic
limit —one merely has the effect of dilution.

We now switch to a n-state Potts model in a random
field described by the Hamiltonian

(11)
The choice (11) ensures that the matrix M p is traceless.
For the pure system, it is well known that a first
order transition occurs at P,(p = 0). This follows from
the expansion of the free energy in powers of Q of
the form AQ2 + BQ3 + CQ4 + . Since symmetry
considerations do not dictate that B —= 0, the Landau
criterion indicates a first order transition. Thus, for our
case, with hp ~ ~, and p + 0,

n6, , —1
S; 'S)

n —1

the model (14) is similar to (1), except that the possible
directions of the molecular orientation is "quantized. " We
alert the reader that the symmetry of the ordered phase
and the universality class of (1) and (14) are different.
Nevertheless, we will show that, within the mean field
approximation, an equation identical in form to Eq. (9) is
obtained for the simpler Potts model. The analog of the
order parameter (10) is

(ns„, —1)(s;. cr ) = "' =m with gm =0.
n 1

(18)
The infinite range version of the Potts model is obtained
on substituting the first term in (14) with

(J/2N) g s; s, . (19)

H= —Jgs;. s, —hogs;-h;,
(tj) I

(14)

~a ' ~P =
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n —1 nWP.
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(15)

where the s; and h; are one among the vectors cr~, . . . , cr„
with FIG. 1. Schematic plot of the transition temperature normal-

ized to the bulk transition temperature versus p, the concentra-
tion of sites with random, infinite field. In the mean field limit,
the transition temperature would be zero at p =—1.
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Proceeding as before, on making the ansatz (11),with 1 = 1, one finds the analogous equation of (14)
1 (n —li 2 1

F(g) = —
I I

g' ——V(g, bo),
2 & n ) P

with

V(Q, ho) = (1 —p) ln[e~~ + (n —1)e P~'(" ')]
n

+ —g In(e~(~+"' " + e P~'" ) [n —1 + (1 —8 i)(ep"' —I)]).
n

In the limit ho ~ ~
Lim V(g, ho) = (1 —p)in[ep~ + (n —1)e P~'" ']
/gp-+OO

(20)

(21)

(22)

and thus fn —li Qz
«mF(P, I —p, Q) =

I

/gp-+OO n ) 2
In[e~~ + (n —1)e P~ " ')

+ const =— (1 —p) F(p(1 —p), l, g/(I —p)), (23)

which is identical to (9). Thus the same conclusions apply
here too.

The infinite range model does not incorporate fluctua-
tions, nor does it yield a percolation threshold. It is
physically clear that when p ) 1 —p„where p, is the
percolation threshold, the connectivity between the re-
maining spins (with no field) is no longer present and thus
is unable to sustain a nonzero temperature transition. In
order to assess the importance of fluctuations, a finite
range interaction and a nontrivial percolation threshold and
to monitor the short time dynamics, we have undertaken
Monte Carlo simulations of the three state Potts model on
a cubic lattice with a fraction p of the sites under the in-
fluence of an infinitely strong random field favoring one of
the three states randomly. Note that our simulations have
been carried out for the simple discrete Potts model and
not for the Hamiltonian (1). While our results are qualita-
tively consistent with experiments, a direct study of model

!
(1) or the Lebwohl-Lasher model with a biquadratic cou-
pling to the field would be very useful. The Hamiltonian
of the model is

H = —gb;, -,, (24)
(V)

with the constraint that a fraction p of the sites have spins
frozen randomly into one of the three states. The spins
t; take on one of three values a, b, or c. Equation (24)
is the same as Eq. (14) with ho ~ and an exchange
interaction equal to (n —I)/n. In (24), we have set the

exchange equal to 1 and in the figures, the temperature
is measured in units of this exchange. Single spin flip
dynamics with the standard Glauber scheme were used.
It is important to note that the three state Potts model
in the pure limit undergoes a first order transition in three
dimensions [10]. We define the magnetization, coinciding
with the definition (18) and the ansatz (11)as

M =! !
Max. QB;,.,„g;,bgB;,, , —1/2

3

&2N~ ) (25)

and the maximum occupation probability (MOP) as

! /Max ga;, , ga;, ,b, gS;, ,, —1/2, (26)

where N is the total number of unfrozen spins, r; is a
function of time, r is the total time, and the sum over
i is over the unfrozen spins. The equilibrium spin-spin
correlation function (SSCF) defined as

)I g r ()t'(0)'
starts with a value of 1 at 7. = 0 and quickly (within
-100 passes) drops to a plateau (SSCFP) around which
it fluctuates mildly.

Our results are presented in Figs. 1—5. Figure 1 shows
a schematic phase diagram deduced from the simulations.
Unlike the mean field prediction that the transition tem-
perature goes to zero at p,b = 1, the Monte Carlo results
yield a value of p,q ( 1 —p, at which the transition
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FIG. 2. The magnetization M plotted as a function of tem-
perature. Five data sets are shown for p = 0.5 and one for the
hulk (p = 1).
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FIG. 3. Plot of MOP versus temperature. Five data sets are
shown for p = 0.5 and one for the bulk (p = l).

temperature becomes zero. (The percolation thresh-
old, p„on a three-dimensional simple cubic lattice is
—0.307.) Indeed we find that p, h ( 0.5. Our results were
obtained with five independent runs on a 16 X 16 X 16
lattice with p = 0.5 with 20000 Monte Carlo passes
used for obtaining averages and 5000 passes to reach
equilibrium from a nearby temperature. The bulk results
employed a 12 X 12 X 12 lattice.

Figures 2—5 shows plots of M, MOP, SSCFP, and the
specific heat as a function of temperature for p = 0.5 and

p = 0 (the bulk case). Our results clearly indicate that
even for p = 0.5, there is no long range order but
sluggish dynamics as evidenced by the large
MOP. Nevertheless, there is no evidence of hysteresis
or history dependence for any of the quantities—
independent runs carried out starting from different
configurations led to practically identical results as did

cycling the temperature. The behavior of MOP versus
temperature strongly suggests that unlike the random-
anisotropy Heisenberg ferromagnet [11] there is no
evidence here of a transition to a spin glass phase. The
results for the specific heat are in qualitative accord with
experimental data [2]—furthermore, their dependence on
the aerogel porosity (and hence p) has the same trend of
recent experimental results [12]. As in the experiment,
the specific heat peak sharpens, increases in magnitude,
and moves towards the bulk peak as p is decreased.
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FIG. 4. Plot of SSCFP versus temperature. One data set each
is shown for p = 0.5 and p = 1.0.

FIG. S. Plot of specific heat versus temperature. Five data
sets are shown for p = 0.5 and one for the bulk (p = l). The
bulk specific heat data have been scaled down by a factor of 2().

In summary, we have presented and analyzed simple
models that are possibly capable of describing the
isotropic-nematic transition in porous media or lack
thereof. Even though our studies do not take into account
the correlated geometry of the aerogel, they yield results
in qualitative accord with existing experiments.
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Note added. —It would be interesting to determine
whether the lower critical dimension of the random field
Lebwohl-Lasher model is larger than three. We are in-
debted to Nihat Berker for suggesting this to us and for
useful discussions.
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