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High-Accuracy Optical Homodyne Detection with Low-Ef5ciency Detectors:
"Preamplification" from Antisqueezing

U. Leonhardt and H. Paul
Arbeitsgruppe "Nichtklassische Strahlung" der Max Plan-ck Ges-ellschaft

an der Humboldt-Universitat zu Berlin, Rudower Chaussee 5, 12484 Berlin, Germany
(Received 10 August 1993)

A novel experimental scheme is proposed that allows us to avoid the deterioration of homodyne
detection measurements due to nonideal detectors. The basic idea is to "preamplify' the signal by
means of antisqueezing. Experimentally, we would employ a squeezer, e.g., a degenerate optical
parametric amplifier, that squeezes just the nonobserved quadrature component of the electric field while
antisqueezing the conjugate component which is measured. It is shown that for sufficiently strong
antisqueezing one achieves the same measurement accuracy as with perfectly efficient detectors. In
particular, in this way the actual Wigner function can be reconstructed in optical homodyne tomography.

PACS numbers: 42.50.Lc, 03.65.Bz

Quantum optics drastically enlarges the realm of fea-
sible experiments compared to quantum mechanics of
material systems. An impressive example is balanced
homodyne detection [1] of a single light mode. Here
not only two selected orthogonal quadrature components
x and P (the analogs of position and momentum) can
be measured, but any linear combination xo = coso x +
sinO' P of them, corresponding to a rotation by an

angle O. Experimentally, this is achieved by shifting the
local-oscillator phase 8. Given a set of distribution func-
tions wo(xe) for quadrature values xe with O" gradually
varying from 0 to m. , the quantum Wigner function of the
mode can be reconstructed even for mixed states, as was
shown theoretically by Vogel and Risken [2]. Quite re-
cently this method (optical homodyne tomography) was
experimentally demonstrated [3]. Measuring the quantum
state for a statistical mixture has not been formulated as
a program in quantum mechanics, since the restricted ex-
perimental possibilities would indeed render it unfeasible
from the very beginning. Only the reconstruction of the
wave function from the probability distributions for posi-
tion and momentum, respectively, has been addressed [4]
already in the early days of quantum mechanics. There is,
however, a serious difficulty in the performed experiments
in quantum optics [3] arising from the finite efficiency of
the employed photodetectors. Strictly speaking, the rele-
vant quantity is the overall detection efficiency g which
comprises any kind of loss of the field before it has been
detected (in particular, losses due to mode mismatch).
Recent systematic studies [5,6] showed that the mea-
sured probability distributions w(x~) become smoothed
as a result of the finite detection efficiency. Instead
of the Wigner function smoothed quasiprobabilities are
reconstructed [6] (so-called s-parametrized quasiproba-
bility distributions [7]). In particular, for 50% (over-
all) efficiency [8] actually the Q function instead of the
Wigner function is reproduced. In this way, intrinsically
quantum-mechanical features =specially the occurrence
of negative values —get lost in the detection process.

In the present Letter we propose an experimental
scheme which allows us to overcome the difficulty due
to nonunit (overall) detection efficiency. The basic idea
is to "preamplify" the signal, thus making it insensitive
to the noise associated with low detection efficiency.
At first sight, it seems that nothing could be gained
in this way, since we would need a strictly noiseless
amplifier, which does not exist for fundamental reasons
[9]. However, since in homodyne detection only one
quadrature component of the electric field is measured, we
require (noiseless) amplification only with respect to that
variable, irrespective of what happens with the conjugate
one. Allowing the latter to get deamplified, we see that
a squeezer, e.g. , a degenerate optical parametric amplifier,
will do just this required task. In fact, its action on the
Wigner function of an incident field W(xe, po), where xo
and po are the quadrature components with respect to a
high-intensity local oscillator of phase 0, is described by
the scaling transformation [10]

xo =6 &o po —~ po (1)

Here, 6 denotes the amplifier gain that is connected
with the squeezing parameter s through the relation
G = exp(2s). As a result of the transformation (1), the
Wigner function becomes stretched (antisqueezed) in the
0 direction (0 being the angle between the xo axis and
the x axis, x = xu) and compressed (squeezed) in the
orthogonal direction (see Fig. 1).

Let us now discuss our proposed measurement scheme
in some detail, thereby concentrating on ba1anced homo-
dyne detection [1] (see Fig. 2). Here the signal is op-
tically mixed with a high-intensity local oscillator. The
fields emerging from the mixer (a 50:50 beam splitter) are
directed to separate detectors, and the photocurrents (or,
equivalently, photon counts) are subtracted to obtain the
measured quantity. Recently, it has been shown [6] that
imperfect (overall) detection efficiencies can be properly
taken into account in this scheme by placing, in an equiva-
lent model, a fictitious beam splitter in the signal beam
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FIG. 2. Schematic diagram of the proposed setup. An an-
tisqueezer is followed by a fictitious beam splitter model-
ing losses in detection efficiency, and by an ideal homodyne
detector.

0.1
0

(a)
from that for the original state as a result of amplification
(antisqueezing) followed by damping.

In our scheme, the first process is described by Eq. (1)
and the second one allows the following theoretical treat-
ment [11]. Since the beam splitter provides a coupling
with a vacuum mode via its unused input port, one has to
start from the Wigner function

W(X18~ X28i P18~ P28) WS(X18i P18)WVaC(X28 ~ P28) r

(b)

FIG. 1. Wigner function of a field mode (in a single-photon
state) (a) before and (b) after the action of a squeezer.
Squeezing in one direction is accompanied by antisqueezing
in the orthogonal direction.

before it impinges on the mixer. This means that homo-
dyne detection with imperfect detectors provides an accu-
rate measurement on a field which is attenuated to some
extent. We thus find the measured distribution for the
quadrature component x by forming the marginal distri-
bution of the Wigner function for the damped field. In our
proposed scheme the field is "prearnplified" with the help
of a squeezer in such a way that xp becomes antisqueezed.
Hence we have to calculate the Wigner function evolving

where w, (xlo, plo) and w„„(x2o,p28) = m
' x

exp[ —(x2o + p28)] are the Wigner functions for the
incident signal and the vacuum mode, respectively. The
action of the beam splitter is simply described by a
rotation in the (xlo, x28) and in the (p18, p28) plane:

(x18 ii ii cosa
(X28) ( —sinu

&p18& & cosa

~ p28 ) ( —sinu

sina i &X18&
Icosa ) (X28 )

sina & &p18&
cosa ) (p28 )

(3)

x exp[ —(x,'8 + p28)] ~ (4)

where W, (x18,p18) is the Wigner function for the original
field and the variables xi@, x2@, pi@, and p2@ have to be
replaced by

Here cos n has to be identified with the transmittance
of the fictitious beam splitter which equals the (overall)
detection efficiency iI. Combining Eqs. (1)—(3), we find
the Wigner function for the total field emerging from the
beam splitter to be given by

W(x18 x28 P18 p28) Ws(X18 pl8) ~

x18 = G ' (cosa x18 + sina x28), x28 = —sina x18 + cosa x28,

p18 = G (cosa P18 + sina P28) ~ p28 = sina Pi8 + cosa P28.1/2
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n order to obtain the Wigner function for beam 1, Wi(x,'o, p', o), we have to trace over the variables x2'o and pzH of
the unobserved beam 2. Utilizing the equations for x,o and p, o in (5) as substitutions in the integral, we readily find
Wi(xio, pio) to be given by the following convolution:

Wt(xylo. pio) = ~ '(1 —n)
'

dxio dPio W. (xylo, Pio)
x exp[ i1 (1 i1) G(xto —i1 ~G xio) ]

~ -p[-~(l —~) 'G '(p-' —q '"-G'"p', ,)'], (6)

/ / /

Pio Wi(xto Pio)

where the transmittance cos n has been replaced by the detection efficiency g. Calculating the marginal distribution for
xio following from Eq. (6) we obtain

(]}
we (xio) =

dg ] (w) "Pie W. (xlo, PiH)

p[ rI ( i7) G(xtH i1
' "G '

xtt-i) ].

where

w() (x', o) = (i1G) '"
wo((i1G)

'"
xylo), (9)

wo(xo) —= dpi' W, (xo, po)

is the marginal distribution for xo in the initial state,
i.e., the true distribution that could be measured with
perfect detectors. So the result (9) confirms our assertion
that "preamplifying" (antisqueezing) the signal with the

help of a degenerate parametric amplifier allows us to
accurately measure one quadrature component of the field
using imperfect detectors. Only an appropriate rescaling
of the measured distribution is needed according to
Eq. (9). In the experiment, of course, the phase of the

pumping field has to be properly adjusted to the phase
of the local oscillator, in order to ensure that just the
measured quadrature becomes antisqueezed. However,
this is easily achieved when both the local oscillator
and the pump originate from a common laser beam
(with the pump beam being frequency doubled), as is
usually the case.

One may object that there might be a different way
of compensating losses in homodyne detection, namely,
deconvolution. Even without preamplification the mea-

(&}sured distribution function wo (xio) is a convolution of
the true distribution wo(xo) with a known Gaussian, as
shown by Eq. (7) setting G = 1. Hence wo(xo) may be

(&}inferred from wo (xio) by deconvolution. Such a pro-
cedure, however, meets considerable difficulties [12].
This is readily seen discussing the Fourier transforms

For sufficiently strong amplification,

q(1 —i1) 'G )) l.
The exponential in Eq. (7), when multiplied by" (1 —rI)

" (rlG)", approaches a 8 function.
Hence, in these conditions Eq. (7) reduces to the simple
form

wo (g) and w8(g) of wo (xio) and wo(xo), respectively.
(~] (1}

Deconvolution means that wo (g) has to be multiplied hy
(]}

the increasing Gaussian exp[+$2 (1 —rj) i'4i1]. Hence,
a reliable deconvolution demands an extremely pre-
cise determination of the high-frequency components of
the measured distribution wo (xio). This requires great

(1)effort in resolving short-scale variations in wo (x~8)
which are very small in themselves. Moreover, the decon-
volution can be applied successfully only when the (over-
all) detection efficiency i1 is extremely precisely known,
which is normally not the case in actual experiments.
Thus our proposed scheme compares favorably with a de-
convolution technique. The measurement accuracy has to
be only as high as sufficient for resolving the relevant
structures inherent in the true distribution function. As a
result of amplification, these structures appear, in fact, on
a larger scale. So in contrast to deconvolution, there is no
need for measuring very small variations.

The injection of nonclassical light (squeezed vacuum)
into a parametric amplifier already has been demonstrated
experimentally [13]. After minor changes this amplifier
can serve as a preamplifier in optical homodyne tomog-
raphy for determining the density matrix of the injected
light. In this way sensitive quantum-interference effects
in phase space [14], such as the oscillations in the pho-
ton distribution of a highly squeezed state [15], can be
observed.

Almost needless to say, our proposed experimental
scheme will be useful not only for optical homodyne
tomography, but for any kind of optical homodyne de-
tection. Various experimental studies are based on this
technique: the observation of the intrinsically quantum-
mechanical squeezing effect [16], the measurement of the

Q function and similar measurements [17,18] as a novel

approach to the quantum phase [19], and the realization
of the Einstein-Podolsky-Rosen experiment for contin-
uous variables [20]. Homodyne detection also plays a
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decisive role as an experimental tool in various pro-
posed experiments, e.g. , in a position measurement on
an atom passing through a standing light wave [21] and
in measurements of generalized quasiprobability distribu-
tions [11,22].

In summary, we have proposed a feasible scheme that
allows us to overcome the limitations due to low (over-
all) detection efficiencies in the accuracy of balanced
homodyne detection. The novel technique is based on an-

tisqueezing the field with respect to the quadrature com-
ponent to be measured, using, for instance, a degenerate
optical parametric amplifier. It is of particular relevance
for optical homodyne tomography, making the reconstruc-
tion of the Wigner function actually feasible.
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