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Anomalous Approach to the Self-Organized Critical State
in a Model for "Life at the Edge of Chaos"
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A recently proposed model for the coevolution of biological species, known to exhibit self-organized
criticality, is shown to have a dynamics which can be characterized by static critical exponents in the
universality class of directed percolation. The dynamics does not exhibit the usual critical slowing down

typically observed in second order phase transitions. The dynamics also modifies the critical distribution
of avalanches. An exact solution for the mean field approximation of the model, along with scaling argu-
ments and simulation results, show that these novel properties result from the use of critical Auctuations

by the dynamics to drive the system to criticality.

PACS numbers: 87.10.+e, 02.50.-r, 05.40.+j, 05.70.Jk

The observation that a wide range of nonequilibrium
systems evolve towards a critical state, without any exter-
nal fine tuning of their parameters, has opened up many
new areas of research. The hope that a general theory
exists governing the statistical behavior of these systems
has prompted some to study simple prototypical models
exhibiting what many now call "self-organized criticali-
ty" [1-3].

On the other hand, theoretical biologists have promot-
ed the idea that the evolution of species coexisting in an

ecosystem is best described as a system driven to the
"edge of chaos. " This is based on the suggestion put for-
ward by Kauffman and co-workers [4] that, in the steady
state, an ecosystem is balanced just at the point where a
change in the average probability for survival in the pop-
ulation of a single species can affect most all of the other
species.

If this were a true description of a mature ecosystem,
then the steady state would be a stable attractor, where
the resulting larger correlations between the changing
populations of species would make the system critical in

the sense of a second order phase transition. The ability
of the system to spontaneously drive itself into this type
of steady state would make it, at least qualitatively, an
example of self-organized criticality. This line of reason-
ing has recently led Bak and Sneppen to suggest a simple
model for the coevolution of species which exhibits self-
organized criticality [5].

The model is defined in general dimension as follows.
Each species exists at a vertex on a d dimensional hyper-
cubic lattice. A measure of the distance between two
particular species in the lattice represents their relative
dependence upon one another. For example, two vertices
representing a predator and its prey are adjacent, because
a change in either of their populations directly inAuences
the other. Each vertex is labeled with the survival proba-
bility, x, or the corresponding species. The survival prob-
ability is the key variable in the model. It inversely mea-
sures the susceptibility of the species to change its genet-
ics, in an unspecified manner.

The system is updated by searching it for the lattice
site having the lowest survival probability, and then

changing the survival probability by selecting a new value
from a uniform distribution. This is meant to model ei-
ther an adaptation of the weakest species as a result of
selective pressure, or the filling of the ecological niche by
another species. The nearest neighbors of the newly

changed site are then relabeled with new survival proba-
bilities in the same manner. This step models the adjust-
ment of the species most strongly dependent upon the ini-

tially selected site. The entire procedure is repeated until
the system reaches its steady state.

The present Letter will not attempt to justify the model
as a valid description for the coevolution of species; the
interested reader is referred to previous papers [5,6]. In-
stead, the purpose of this work is to study the properties
of the transient and steady state dynamics. The model is
rich enough to display many surprising features which are
ostensibly quite characteristic of self-organized criticality
phenomena appearing in a great number of nonequilibri-
um systems. However, it is simple enough to allow a
quantitative understanding of its dynamics, which are in-
tractable in other models. The properties of the dynamics
are radically different from what is ordinarily observed at
an equilibrium second order phase transition.

One of the most important features of the dynamics is
that it does not exhibit critical slowing down. Usually,
when a system is equilibrating near a critical point, mac-
roscopic quantities decay asymptotically according to an
exponential time dependence exp( —t/r). Here, t is the
time normalized by the number of elements in the system.
The longest decay mode r is a function of the correlation
length (, and follows the relation r-g', where z is the
(positive) dynamic critical exponent. For the coevolution
model, the elements are equivalent to species. It will be
shown that, above the upper critical dimension d=4, the
decay to the steady state is exponential, but ~ is const
(z =0). For dimensions d (4, the system decays accord-
ing to a power law.

Another surprising feature is that the model is inti-
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mately related to directed percolation. The static critical
exponents in directed percolation determine the dynamic
exponents in the coevolution model. On the other hand,
the dynamics influences the singular behavior of the time
averaged quantities, so that their critical exponents are
generally not given directly by the directed percolation
exponents, but rather by combinations of them.

This Letter will elucidate the interesting features in the
dynamics and show how the model naturally embodies
them without the introduction of new dynamic critical ex-
ponents. The transient dynamics will first be solved in a
mean field approximation of the model. The results will

be used to construct a scaling argument for general di-
mension, giving the asymptotic time dependence. Finally,
the infiuence of the critical steady state dynamics on the
time average quantities will be shown. All of the analytic
results are backed up by Monte Carlo simulations.

An exactly solvable mean field approximation of the
model can be defined by modifying the updating pro-
cedure. The site with the lowest survival probability is

selected and changed as before, but now k "neighboring"
sites are chosen at random from the remaining system.
Their survival probability is then changed, instead of the
nearest neighbors of the initial site. The model now

effectively has an infinite range interaction between sites,
but only k sites are chosen instead of the entire system, in

which case the model would immediately reach a trivial

steady state.
Consider the distribution of sites S(x) as a function of

their survival probabilities x. The updating procedure
biases the average survival probability, x, to increase with

time. Because new x are always drawn from a uniform
distribution, the site distribution S(x) should resemble a
piecewise continuous sequence of constant functions at
any given time. This observation is not restricted to the
mean field approximation, but is in fact true in general
dimension. Figure 1 shows simulation data for S(x) in

d 1, 2, 3, and 4 dimensional models in the critical
steady state. There appears to be only one discontinuity
in the distribution at the value x„where, for x, & x & 1,
S(x) is much larger than for 0 & x & x, . The simulations

evolve from an initial state where the site distribution is

uniform over the entire interval 0 & x & 1. At times prior
to the steady state, the site distribution S(x) has the

same form as those in Fig. l, except that the discontinuity

appears at a value x, where x C x, . As time increases,
&m xc.

The mean field approximation of the model may be
solved by considering the time evolution of the location of
the discontinuity x~ (t) in the site distribution, discretized
in intervals hx. Let JV' represent the number of discrete
intervals in the distribution so that JV'hx=l. Further-
more, let N be the total number of sites (species) in the

system. The first objective is to calculate the time h, t it

takes x to increase by hx.
The probability p(n) that a single site is assigned a

survival probability x, with x & x, in n updates is
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FIG. l. Simulation data sho~ing the distribution of sites
S(x) having survival probabilities x for systems in the steady
state. Dimensions d l, 2, 3, and 4 are shown with diamonds,
plusses, squares, and crosses.

The average number of updates n for the site to have x
where x~ & x is therefore

n= g np(n)= l

n 1
—xm

(2)

The total number of sites which must have their survival

probabilities changed in order to increase x to x +hx
is the height H of the distribution S(x) when x & x:

Nh, x
xm

(3)

T= g n'+'k' 'x=
i 0 1

—kx n
(4)

The cascade, initiated from the update of a single site, is

analogous to the avalanches in other models exhibiting

Here, 1V is assumed to be suitably large so that fiuctua-
tions in the height of the distribution can be neglected.

Now the effect of randomly selecting k sites at each
update will be considered. This will increase the time in-

terval hr by a large amount, and it is ultimately the
source of the singular behavior at criticality. Of the k

selected sites, kx will, on average, be given new survival

probabilities x with x & x . The average number of up-

dates required to assign all of these sites a value x with

x & x is nkx, where n is given by Eq. (2). Finally, the
fact that the initial site takes an average of r7 updates to
have a survival probability x & x causes the time to in-

crease by a factor of8 to n kx
Of course, the kxm sites will give rise to a second "gen-

eration" of sites to update. In general, an infinite number
of generations are possible, with the average time to make
all of the survival probabilities greater than x of the ith

one being n' 'k'x' . The total time T for this cascade
eAect to occur, if it is finite, is given by the geometric
sum:
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FIG. 2. Time evolution of the jump survival probability x
for a mean field system with k 4. The diamonds are Monte
Carlo data, and the dashed line is a plot of Eq. (7).

self-organized criticality (e.g., sandpiles).
The total time for the discontinuity in the distribution

to move from x~ to x +d,x is given by the product of
Eqs. (3) and (4) [using Eq. (2)]:

Nh, x
h, t

(1 —x )[1—(k+1)x ]

The time it takes x to reach a given value, starting from
an initially uniform distribution with x (0) 0, is the
sum over ht up to the desired value of x . Taking the
continuum limit, one obtains

FIG. 3. Time evolution of the reduced jump survival proba-
bility, x, —x . Plusses, diamonds, and squares are Monte Carlo
data for d 1, 2, and 3, respectively. The dashed lines are fits

to Eq. (9) using d+1 directed percolation exponents.

The mean field analysis gives powerful insight into the
behavior of the model on a d dimensional lattice. The
key feature driving the critical behavior is the divergence
of the size of the avalanches as x x,. Furthermore,
the singular behavior determining the time ht for x

x +Ax is the average size of the avalanches. It
should therefore be true that, in general, the asymptotic
scaling in the transient dynamics can be obtained from a
form analogous to Eq. (6):

t z~(1) dx'

(1 —x' ) [1 —(k+ l)x' ]
(6)

t'r (r)t- (x, —x' ) "dx'
aJ

so that

where t is normalized by the size of the system, N. Per-
forming the integration and inverting give the final result:

ekt
xnan (k+ 1)e~' —1

This last equation shows that the x approaches the
value x, 1/(k+1) for large t. Upon reflection, it is
clear that the mean field approximation describes a
branching process with coordination number k+2, as
was observed by Flyvbjerg, Sneppen, and Bak [6].

Equation (7) also shows that there is no critical slow-

ing down in the conventional sense. The system decays to
criticality as exp( kt), where t—he time constant r =1/k
is a fixed parameter of the system, independent of a
correlation length.

Figure 2 shows the time evolution of a mean field sys-
tem with k =4. The dashed line is a theoretical plot ob-
tained from Eq. (7). The diamonds are the Monte Carlo
data from the average of 10 simulations with n=10 .
The value of x~ was calculated from the measured aver-
age survival probability x, determined from the relation
x 2x —1. The agreement between the two plots shows
that the analytic theory is correct within the resolution of
the simulation data.

x (t)-x, —cot

Here, y is the mean cluster size exponent for a given class
of percolation problems.

The d dimensional model appears to bear a strong
resemblance to 8+1 directed percolation. Assuming that
these two models are in the same universality class allows
one to calculate the scaling of the transient dynamics im-

mediately. Substituting in the d+ I mean cluster size ex-
ponent for directed percolation into Eq. (9) gives a the-
oretical prediction. Figure 3 shows data from 1, 2, and 3
dimensional simulations of the model, where the fitting
parameter is the value of x,. The data show reasonable
agreement with the theory, as indicated by the dashed
lines [7).

In the critical steady state, the model gives interesting
behavior in terms of the distribution of the number of
avalanches C(s) as a function of their size s. Following
the same line of reasoning in the scaling theory for the
transient dynamics, one would expect C(s) to be analo-
gous to the cluster size distribution in d+1 directed per-
colation, and that C(s)-s' ', where r is the cluster size
distribution exponent for directed percolation.

However, the steady state dynamics act to change the
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FIG. 4. Avalanche size distribution for a d =1 system at the
steady state. The dashed line is a fit to Eq. (I I) using I+I
directed percolation exponents.

FIG. S. Finite-size scaling measurement of the correlation
exponent vof the d 1 model. The dashed line is a fit to L
for 1+1 directed percolation.

value of the exponent. The critical state is inherently
nonequilibrium, and this leads to strong fluctuations of
the system near x,. At a given value of the discontinuity
x, the cluster distribution obeys the following relation
according to standard scaling theory:

C(sx )-s" 'f(six, —x i' ), (10)

This is very similar to ideas recently suggested by Sor-
nette [8] as to how critical exponents are modified in

nonequilibrium systems by "sweeping" through the criti-
cal point. Figure 4 shows a comparison between the
avalanche distribution for a d= I simulation of the coevo-
lution model as compared to the theoretical prediction
from Eq. (11), using directed percolation exponents in

1+1 dimensions. They appear to be in excellent agree-
ment.

On the other hand, the dynamics does not modify cer-
tain exponents. For example, a measurement from a
d=1 simulation of the correlation length exponent v is
shown in Fig. 5. The finite-size scaling method of Rey-
nolds, Stanley, and Klein [9] has been extended to the
present model by measuring the steady state fluctuations
in x, as a function of the linear dimension of the system,
L [10]. The fluctuations scale as L 'i". The dashed line
is the value of I/vi (=0.576) for I+I directed percola-
tion, which agrees well with the data.

In conclusion, the model advanced by Bak and Sneppen
[5] for the coevolution of species appears to reveal many
interesting properties in its dynamics, which are very like-

ly general features of many systems exhibiting self-
organized criticality. The lack of conventional critical
slowing down is particularly surprising. The mean Geld

where f(y) is a scaling function which cuts ofl' sharply for
large y. The fluctuations about x, can be included by in-
tegrating Eq. (10) near x, . This results in the modified
scaling form

g( ) i —f —cr

dynamics decays quickly with an exponential form having
a nondiverging time constant. In finite dimensions, below
d =4 (the upper critical dimension for d+1 percolation),
the decay is slower than exponential. The critical Auctua-
tions seem to aid the decay of the system to the critical
state in mean field, but severely inhibit it in lower dimen-
S101ls.

It is hoped that some of the ideas and techniques
developed here can be used to understand the dynamics in
other systems exhibiting self-organized criticality.

The authors would like to thank P. Bak, D. Stauffer, E.
Lage, V. Privman, L. Schulman, and C. Doering for
many useful comments and criticisms.

IYote added. —While this manuscript was in prepara-
tion, the authors received a preprint of Pazcuski, Maslov,
and Bak in which Eq. (9) for the transient dynamics was
derived, and the relation to directed percolation was sug-
gested using field theoretic arguments [11].
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