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Dynamics of Vortices and Their Contribution to the Response Functions
of Classical Quasi-Taro-Dimensional Easy-Plane Antiferromagnet
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The medmx6sm of magnetic vortex motion in the classical easy-plane antiferromagnet and the
vortex gas contribution to the response functions of such magnets are considered for temperatures
above the Kosteritz-Thouless transition. Unlike a ferromagnet, gyrotropical properties of such vor-

tices arise only in sn+ciently strong trlxsversal magnetic Geld. Because of that, the magnetic Geld

produces an important effect on the shape and the width of the central peak of the dynamical

stmcture factor of antiferromagnets.

PACS numbers: 75.10.—b, 75.50.Ee

Nonlinear elementary excitations of quasi-two-dimen-
sional (2D) spin systems such as ma/pietic vortices bring
about specific solitonical contributions to all the thermo-
dynamical characteristics of a magnet [1]. There is a gas
of quasifree m~ignetic vortices in the isotropic easy-plane
magnet above the critical temperature T,. These soli-

tons make some contribution to the response functions
of the magnet and shape the so-called central peak (CP)
of the dynamical structure factor (DSF). Such a contri-
bution was calculated in Ref's. [2—5] for the vortices in a
ferromagnet, in Ref. [6] for in-plane vortices in an anti-
ferromagnet (AFM), and in Ref. [7] for in-plane and out-
of-plane vortices in the AFM with very weak anisotropy
and asymmetric DzyalosbinakiI interaction (DI). On the
other hand, comparison with simulations (see Refs. [6,
7]) proves that dynamics of out-of-plane vortices in the
AFM difFers strongly from those mentioned above; they
must have an effect on rms velocity of vortices and con-

sequently on the vortex contribution in the DSF.
In this paper we have considered the dynarriics of the

out-of-plane vortex and their ensembles in the AFM with
weak easy-plane anisotropy, asymmetric DI, and the ex-
ternal magnetic field, which is perpendicular to the easy-

plane, calculated vortex average velocities and their con-

tribution to the DSF. It was proved that the presence of
a magnetic field H by contrast to the DI considerably
changes vortex dynamics which substantially transforms

the shape and the position of the CP. Besides that we

showed that the value of rms velocity is greater than in
the ferromagnet [8] for the same values of parameters
of magnets and depends critically on the magnetic field.

Strong dependence on temperature of vortex gas rms ve-

locity is predicted for slight fields or absence of field.
The modeL —Let us consider the two-sublattice model

of the AFM. Instead of magnetic moments of sublattices
Mi and Mz~ IMil = IM21 = Mp, it is convenient to
introduce the normalized magnetization vector m and
the normalized sublattice magnetization vector 1,

m = (Mi + Mz)/2Mo 1 = (Mi —Mz)/2Mo

which are related by

W= Moz -rn'+-(Vl)'+ —/2
2 2 2'

+ d (e, [m x 1)) —2h m) .

Here the unit vector e, is directed along the hard
axis of the crystal, Mp is the saturation magnetization,
b = H, /2Mp and cs are the constants of the uniform
and nonuniform exchange, respectively, P ) 0 is the
anisotropy constant, h = H/Mp, and d = 2'/Mp is
a constant of the DI.

To investigate the nonlinear dynamics in the AFM let
us switch over to the effective equation for 1 only on the
basis of the generalized rr model of n field for the sublat-
tice magnetization unit vector 1; see Refs. [10, 11] (the
equivalent description through the angular variables for

Mi and Mz was proposed by Mikeska [12] and used in

Refs. [5—7]). It is convenient to use angular variables
for 1, /, = cos 8, / + i/„= sin 8exp(iy). Neglecting the
dissipation processes, the equations of motion can be ob-
tained from the Lagrangian,

1 ((B&pi B(p

cz i, t, Bt)

1 2cos e
lH

—(&v)'

(3)

The magnetization vector m can be expressed in terms
of 1 and Bl/Bt only:

d 2 2 Bl
rn = —[1 x e, ] + —(h —1(h 1)}+ —x 1

b
' 6 gbMp Bt

(4)

m + 1~ = 1 (m, 1) = 0.

Supposing [m[ &( ~1[
—1 (this assumption is justifi-

able in a weak magnetic field H (& H, and a weak DI,
Hq (& H„where H, and Hq are exchange and DI fields,
respectively), let us write down the energy density of the
AFM [9]
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Here c = gMO/ah/2 is the minimum phase velocity of
spin waves, g is the gyromagnetic ratio, a is the lattice

constant, lJr = lo (1+H2/H02) is the characteristic

magnetic length, lu = (o,/P) i~2, Ho = H, (b/P) ~ /4, and

p = p(1+d2/hp2)i~2 is the efFective anisotropy constant,
renormalized by the DI; see [13,14].

Note that in the framework of the model (2) the DI
was exhibited in the statical characteristics only, namely,
in the formula for m and in the renormalization of the
anisotropy constant P. But in fact the additional term

e;~I,D~;1;i~Big/Bt can occur in the Lagrangian (3) for the
arbitrary type of the DI [13];see also Ref. [14]. If D;~ =
de;~g(e, )g the term reduces to the total derivative and
can be omitted.

It should be noted that at H = 0 and D,~

de;~A,, (e,)1, the dynamics of the AFM magnetization is
Lorentz invariant (LI) with the characteristic velocity
c, but when H P 0 we have the gyrotropical term
oc gH sin 8(By/Bt), breaking down LI properties [in the
ferromagnet we have an opposite situation in which the
dynamical term of the Lagrangian oc (1 —cos8)(ByBt)
is of a gyrotropical nature only, but terms with (B8/Bt)z
and (By/Bt)s are absent].

In the dissipationless limit, the system has such inte-
grals of motion as magnet energy E and momentum of
magnetization field P. The expression for the momentum
may be obtained from the Lagrangian (3): P = PL&+Ps,

naMss s B8 By . 2Pr,i= — d x V8—+Vy sin 8
C2 Bt Bt

O,aM2
Ps =

2 d @sin 8gHVy, (5)

where the term PLi is a customary LI one, and the gy-
rotropical term Ps is caused by the presence of the mag-
netic field. This expression has no singularities connected
with the undifFerentiability of y when r -+ 0 and 8 ~ 0
or x (the problem of the undifFerentiability of y was dis-
cussed by Papanicolaou and Tomaras for the vortices of
a ferromagnet; see Ref. [15]).

It is of interest to note that in the case of a station-
ary nonuniform state of the AFM such as 8 = x/2,
y = k r, the presence of the term Ps leads to the
nonzero momentum P = kgHaaM02S/c2, where S is
the AFM area. Such behavior is typical for a super-
fluid liquid, which is described by a complex order pa-
rameter 4' =!Q!exp(iy). The momentum density of the
superfluid flow is determined by the well-known expres-
sion p = !Q! Vy = p,v„where p, is the density of the
superfluid component and v, is its velocity. The similar-
ity of these expressions makes it possible to talk about
a fundamental analogy between superfluid systems and
easy-plane magnets (this problem was discussed for the
case of ferromagnets; see Refs. [16,17]). The momentum
density can be naturally juxtaposed with the quantity
p, v„while the energy density corresponds to the quan-
tity p, vs, /2. It follows from the above formulas that the

quantity pAFM = 2~aMO(gH/c )z = 8aH2/c 6 can be
treated as the analog of the superfluid density p, for the
dynamics of the easy-plane AFM.

Vortez dynamics .—The structure of the vortex is de-
termined by equations for 8 and y following from (3).
For the motionless vortex the solution has the form

with boundary conditions 8(0) = z'(1 —p)/2 and 8(oo) =
s/2, where p = kl determines the second topological
charge of the vortex (polarization) [17]. The energy of
the static vortex diverges as the logarithm of the area S
of the vortex, and when! v! = 1 it is determined by the
expression Es = sz'aaM&~ ln(5. 67S/l~&); see Ref. [9].

The basic distinctions of vortex dynamics in the AFM
from the case of the ferromagnet are explained by the
study of its dynamical properties. It was mentioned
above that the Lagrangian (3) has the LI property when
H = 0, and the distribution for the vector 1 of the
vortex moving with the velocity v = ve can be ob-
tained from the static solution by the Lorentz transform,
z ~ z' = (x —vt)(1 —vs/c ) i~, y ~ y. The energy
and momentum of the vortex when H = 0 are deter-
mined by the LI formulas, Er,i(v) = Es(1 —v /c )
PLi(v) = (v/c )Ei,i(v), where Es is the energy of the
motionless soliton. Thus, the vortex efFective mass in
the case where H = 0 is proportional to lnS.

In the presence of the magnetic field, the examination
of the vortex motion is more complex. In particular,
there is no exact solution describing the moving vortex
in the ferromagnet. Unlike this ease, we were able to
construct the exact solution for the vortex in the AFM
moving with constant velocity v ( c and H P 0,

y = ye+ arctan —+ k r, k = vgH/c
u 2
gl

8=8(('), ('=r'(1„' a') '-, r-" -=&"+y&.

It is easy to express the vector m in the terms of an-
gular coordinates,

(.d 2h
m, + im„= —sin 8 ! i - + —cos 8 !

e'~
gb 6

2 (.B8 . By)+ ! i—+sin8cos8 !
e'~,

gbMO ( Bt Bt)

(2h 2 By)
!m, =sin 8! ——

( b gbMO Bt) (7)

y = yo + &X 8 = 8(L.') ( —= r/lH,

both in the ferromagnet and in the AFM, where ys =
const, y and r are the polar coordinates in the magnet
plane xy, and v = kl, +2, . . .determines the vortex topo-
logical charge (vorticity). The function 8(() is a solution
of the ordinary difFerential equation

d 8 ld8 ( v~)
+ ——= sin8cos8! 1 ——!,
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The term with k is caused by the vortex "freezing
into the condensate. " The effect of "freezing into" ex-
ists both in ferromagnets and AFMs (when H g 0), and
it makes possible the vortex motion only with hydrody-
namical fiuxes. Therefore we can omit the inertial term
in the equation of motion. The energy of such a soli-
ton E(v) = Ei,i(v) + yv2/2, where p = p+FMS is the
condensate mass.

To investigate the dynamical properties of the AFM
vortex ensemble, we use an approach [18] based on an
analysis of the expression for the magnet momentum P
and force balance conditions dP/dt = F, where F is the
external force acting on the vortex. For a steadily moving
soliton 8 = 8(r —q(t)) and y = y(r —q(t)), where q(t)
describes the motion of the vortex center. In accordance
with (5), the momentum contains the two terms PLi and
Ps. As in the case of the ferromagnet, P~ contains the
term Ps~ 1, which is finite when v ~ 0. The value

of solitonic response functions. Investigations of the case
of the ferromagnet by Mertens et al. [2) showed that
vortices produce an essential contribution to the CP re-
gion. Thermodynamical characteristics of vortex gas in
the AFM exhibit salient features connected with the van-
ishing of G as H ~ Q.

Let us introduce the self-consistent effective "elec-
tric field" E, describing interaction with other vortices.
There is a formal similarity between the equation of vor-
tex motion and the equation of motion of guiding cen-
ter in a 2D plasma, which lies in a perpendicular mag-
netic field [8]. It allows us to estimate the value of
(E ) by results obtained by Taylor and McNamara [20].
(Ez) = n„ze2lnA, where n„ is the equilibrium vortex
density, and A determines the proximity to the ther-
mal equilibrium. For the cases of a random and a ther-
mal distribution A is expressed by AR = S/za2 and by
AT = 4+2T, /n„ezas, respectively.

Using this (E2) and Eq. (9) we obtain the value of the
rms vortex velocity

Bq, Oq;G xez +Fe,i —g =0 (9)

Here q; is the ith vortex-center coordinate and G is the
above-determined gyrotropical constant. The meaning
of the remaining terms is the same as in the ferromag-
net: F... = —V, '8;„z describes the interaction between
vortices, Hamiltonian R;„& ———2 P,+. e;e~ ln ]q; —

q~ ~

is
typical for 2D Coulomb interaction, "electrical charge"
e; = v, Mogxaa, and rI is a viscous coefficient; cf. [19].

Vortex gas averuge velocity. —Equation (9) was used by
Huber [8] in the thermodynamical calculation of vortex
gas velocity in the ferromagnet. The features of vortex
gas motion are of substantial interest in the calculation

can be transformed to dPs /dt = —G [v x e,], where(o)

G = 2xvaaM—o gH/c (8)

When writing down the force balance condition as
G[v x e,]+F= 0, the term with G may be interpreted
as some gyrotropical force acting on the moving vortex.
Such gyroforce is always present in the case of the fer-
romagnet and determines the most important properties
of the dynamics of vortices and their ensembles, in par-
ticular, the value of rms U; see Ref. [8] and below in
the text. The gyroforce in the AFM is nonzero only at
H g 0, and for the same values of the parameters Mo
and v, it is less than that in the ferromagnet [absolute
value G~FM - (8H/H, ) GFM, the order of the magni-
tude of H, is 100-1000 kOe]. Let us point out that it is

only in the case of the AFM that G does not depend on
the second topological charge p.

On the basis of the previously obtained relations, let
us write down the efFective equation of motion for the
ensemble of vortices,

e(E2)iIs c (n.n„to2Hss

(Gs+q2)iI& 2 L,
Hz y H2 j

where for convenience we use the typical fields Ho (see
above) and H, = g(g8/8z'a); H„ is proportional to the
relaxation coefficient. Estimating il as in Ref. [19], we

obts, in H„0.05H owhen T - T, Thus, f.or the value

u/uH = H, /4H is seen to be inversely proportional to H,
but for H (( H„, u/uH does not depend on H. Rather,
u/uH = H, /4H„, where

2
is a typical rms velocity in the ferromagnet obtained by
Huber [8]. Therefore the rms velocity in the AFM is

greater than that in the ferromagnet. These results agree
in kind with data simulated by Volkel et al. [6]. It would

be interesting to check the dependence u oc 1/H, but
numerical simulations for H g 0 have not been carried
out, as far as we know. In the case where H ( H„
the value u does not depend on H, but it is inversely
proportional to relaxation constant rI. Since rI oc T",
n = 2 for the ferromagnet [19] and n = 3 for the AFM
[21], this formula describes a decrease of the value of u
with increasing T stronger than in the ferromagnet. Note
that the computer simulations demonstrate a decrease
of u for the AFM [7] in a small vicinity of T, when T
increases stronger than for the ferromagnet [6].

DSF calculation Now we p.—roceed to the calculation
of the vortex contribution to the correlation functions.
Because of (1) contributions of terms m and 1 are inde-

pendent and additive. Moreover, they give correlations
at two different positions in q space. Namely, 1 deter-
mines components of the CP, which are centered about
the AFM Bragg peak, i.e., at the position K = (~, z);
cf. Ref. [6]. But m makes a contribution at q = 0.
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The concrete calculation can be made in analogy with
the case of the ferromagnet [2], so we are not going to
detail it here. Let us note that the CP for the out-of-
plane correlations has a Gaussian shape, and for in-plane
ones it has a (squared) Lorentzian shape. Both for in-

plane and for out-of-plane correlations, the CP widths
AI', = qu and b,i' = 1.14un„ increase strongly as thez/c .
field diminishes; see Eq. (10).

It is important to note that the magnetic field and the
DI affect difFerent components of the DSF and can be
checked independently. The form of the in-plane com-
ponents is not a function of the magnetic field. It is
determined by such expressions as in [6] and [7], which
take into account the DI. For the out-of-plane correla-
tions the DI makes no contribution, but the form of the
DSF components depends substantially on the value of
the magnetic field:

~"(q ~) = Ifi(q)l'+G(K' —q, ~)

4hz 4hz
+ , n.b(q)~(~) + , Ifz(q)I'+c:(q ~)

Here Fc:(q,v) determines the well-known [2] expression
for the the Gaussian CP,

EG = "
exp —((u/qu) z,

2' 3/2'
fs(q) = fd xcos" 8(r) exp(iq r), k = 1, 2, are two dif-
ferent vortex form factors, which determine distributions
of 1 and m, respectively. Let us note that the intensity
of the third term oc Hz. The analysis of this dependence
can be a good test for comparison of experimental and
theoretical data.

Thus our investigation demonstrates that vortex dy-
namics in the AFM differs substantially from that in
the ferromagnet and besides the magnetic Beld, which
is perpendicular to the easy plane, strongly affects it.
The vortex dynamics is described by the LI equations
when H = 0. In the presence of the Beld, effects of
vortex "freezing into the condensate" and of gyrotrop-
ical motion appear. There is a transfer from the vis-
cous motion to the gyrotropical one when H increases.
For all reasonable fields H « H„which do not destroy
the AFM order, the rms velocity U and the CP widths
b,l' oc u are greater than Huber value: u oc (H, /H)u~
for H )) H„and u oc (H, /H„)uH for H « H„, whereH„- 0.05Hp &( Hp &( H, . Moreover, the presence of

field gives rise to the particular contribution to the out-
of-plane DSF components whose intensities are substan-
tially dependent on the field.

The authors are indebted to V. G. Bar'yaktar, A. R.
Bishop, A. K. Kolezhuk, F. G. Mertens, A. R. Volkel,
and G. M. Wysin for stimulating discussions.
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