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The structural and therxnodynamical properties of Ga Inq P solid solutions are studied using
Monte Carlo simulations based on density-functional perturbation theory. The free-standing alloy
displays a model random behavior, with a miscibility gap below 820 K. In samples grown on
a GaAs (OQ1) substrate, the resulting epitaxial strain stabilizes various ordered phases which give
rise to a rich phase diagram below 230 K. Among these phases, the chalcopyrite is dominant for
x = 0.5, and two new, more complex, stable phases have been identified at diferent concentrations.

PACS numbers: 61.66.Dk, 64.70.Kb, 81.30.Bx

In recent years semiconductor solid solutions have at-
tracted much interest due to the flexibility that they of-
fer, upon variation of their composition, in the tuning of
their physical properties outside the narrow range other-
wise provided by elemental and binary semiconductors.
According to the current picture, the phase diagram of
these systems is mainly determined by the large elastic
energy required to mix lattice-mismatched semiconduc-
tors, which drives the tendency for the resulting alloy to
segregate and is therefore responsible for the opening of
a miscibility gap below a certain critical temperature

A vast amount of evidence has been gathered recently,
challenging this simple picture and recording the ap-
pearance of spontaneous ordering in semiconductor alloys
grown by epitaxial techniques [1]. The role of strain in
stabilizing some ordered structures was soon recognized

[2], but there is now a general consensus on the fact that
the mechanisms responsible for the observed structures
are to be searched for in surface and/or kinetic effects

[3] rather than in bulk thermodynamical stability. Nev-
ertheless, a thorough understanding of the equilibrium
properties of these systems is a prerequisite for any fur-
ther theoretical insight, and much effort has been devoted

to their study from first principles [4,5].
The issue of the phase stability of Ga, Ini P is ad-

dressed here using the recently developed method of com-
putational alchemy [5]. This system is a paradigmatic ex-
ample of a polar, lattice-mismatched semiconductor al-

loy, whose interest derives both from its optoelectronic
applications and from the clear evidence of the occur-
rence of unexpected ordering in epitaxially grown sam-
ples [6]. The key idea underlying computational alchemy
is to consider any actual realization of the solid solution
as a slight deviation from a suitably defined reference
periodic system —the virtual crystal —and to treat it by
density-functional perturbation theory (DFPT). In the
case of the Ga Ini P pseudobinary alloy, disorder af-
fects only one of the two fcc sublattices of a zinc blende
structure. Let us indicate the knots of such sublattice
by (R): a microscopic configuration of the alloy is fully
specified by a set of Ising-like variables (oR), defined as
oR = +1 if the R lattice site is occupied by a Ga atom,
and oR = —1 if it is occupied by an In atom. For any
given configuration and neglecting lattice relaxation for
the present, the bare alloy potential acting on the valence
electrons reads

.1 1
V(r) = ) vp(r —R —6) + ) —[vGs(r —R) + v«(r —R)] + ) oR-[vG, (r —R) —vi„(r—R)],

R R R

where vG I„pare the ionic pseudopotentials of the three
atomic species and 6 = -444(1, 1, 1) is the displacement
between the two sublattices, ao being the lattice param-
eter of the zinc blende structure. The first two terms in
Eq. (1) do not depend on the cr's and define the poten-
tial of a lattice-periodic unperturbed system (the virtual
crystal), whereas the third depends on the chosen con-
figuration and will be treated by perturbation theory.
The perturbation acting on the virtual crystal is the sum
of neutral contributions localized at lattice sites, whose
strength is proportional to the chemical difference be-
tween the atomic species, Ga and In. According to the

sign of the o's, each one of these alchemic perturbations
"transforms" a virtual cation into a real Ga or In ion.
Besides an electron-density response, this perturbation
also induces a relaxation of the ions from their ideal po-
sitions, which is to leading order linear in its strength
and can also be treated by perturbation theory. Using
DFPT, the energy of the alloy is recast in the form [5]

E[(an)] = Eo+ K) cr~
R

+-) o J(R-R')oR+O(~v'),
RR'
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where Eo is the unperturbed energy, K—which is first
order in the perturbation —acts essentially as a shift in
the difFerence between the chemical potentials of the
two pure compounds, and the interaction constants J
are well-defined linear-response functions of the unper-
turbed virtual crystal N. eglecting atomic relaxation, the
J would be very short ranged [5]; the efFect of such relax-
ation is to renormalize the interaction constants via the
term J(R —R') ~ J(R —R') —QR„R„,& (R" —R)
C' (R" —R"') E(R"' —R'), where C is the matrix of
the interatomic force constants, F b(R) is the nth com-
ponent of the force acting on the bth virtual atom of the
unit cell (b =1,2) located at R when the virtual ion at
the origin is transformed into a real one, and the scalar
products run over the six values of the (ab) indices. The
dependence of the sound velocities upon direction deter-
mines a nonanalytic behavior of the inverse dynamical
matrix at q = 0 in reciprocal space, which results in a
slow anisotropic decay of the renormalized J at large dis-
tances in real space [J{R) I/Rs] [7]. The nature of this
behavior is purely elastic, and the polarity of the mate-
rial (which enters the dynamical matrix via the efFective

charges) does not affect it directly.
The dependence of the equilibrium volume upon com-

position, i.e., the macmscopic relaxation, is included, as
is the microscopic relaxation, in the renormalization of
the interaction constants and could be determined by
an appropriate long-wavelength expansion of the energy.
It is, however, more convenient and accurate to sepa-
rate the two efFects. To this end, an elastic contribu-
tion to the alloy formation enthalpy is defined as the en-

ergy needed to bring the individual pure materials from
their equilibrium volumes, AG, p i„p,to the alloy volume
0: 6E ~ t,(x, 0) = x[EG p(A) —EG p(AG p)] + (1—
z)[Ei„p(Q)—Eizp(Ai~p)]. This elastic energy can be
calculated exactly from the equations of state of the two
components, accounting thus for some additional anhar-
monicity. The congyutufional contribution to the forma-
tion enthalpy —i.e., the difFerence between the formation
enthalpy and the elastic term —is then calculated from

Eq. (2), where the interaction constants J(A), renormal-
ized for q P 0, depend explicitly on the volume A.

Our calculations have been performed in the local-
density approximation to density-functional theory, us-

ing norm-conserving pseudopotentials and plane waves

up to a kinetic-energy cutofF of 16 Ry; Brillouin-zone in-

tegrations have been performed using sets of k points
equivalent to the ten Chadi-Cohen special points. The
J have been calculated at the equilibrium volumes of
GaP, InP, and of the virtual crystal (x = 0.5), and then
quadratically interpolated in between.

The adequacy of second-order DFPT in describing the
structure and the energetics of the alloy has been tested
against nonperturbative calculations for the structures
listed in Table I. In the bulk geometry, possible tetrag-
onal distortions of the ordered structures are second or-

TABLE I. Lattice parameters (a.u.) and formation enthal-
pies b,H (meV/atom) for different structures of Ga Ini ~P,
as obtained from DFPT. The fully sel.f-consistent results are
showa, in parentheses, for a comparison. "Hulk" refers to the
free-standing alloy and "Epitaxial" to the alloy grown onto
a GSAs substrate. The denominator in the Ga composition
indjIcates the number of casions in the unit cell.

Structures Bulk (a) Epitaxial (b)
2G ap AH a~ AH
1/2 10.61 21.4 (20.5) 10.61 0.8 (-0.2)
3/4 10.42 16.2 (18.1) 10.25 -0.9 (1.0)
1/4 10.79 16.8 (13.7) 10.98 1.9 (-1.1)
2/4 10.60 10.3 (8.4) 10.60 -10.3 (-12.0)
3/4 10.42 9.1 (10.8) 10.25 -6.9 (-5.4)
1/4 10.79 11.8 (8.2) 10.97 -3.2 (-6.6)
1/2 10.61 31.1 (30.4) 10.63 10.6
0.5 10.60 18.3 10.61 -2.3

12/16 10.42 7.5 (8.6) 10.24 -8.3
26/32 1038 6 2 10 16 6 7

SL[001]i+i
Luzonite
Luzonite
Chalcopyrite
Famatinite
Famatinite
SL[111]iyy
Random
n phase
P-phase

der in the alchemic perturbation [8] and have been ne-

glected (for the SL[001]i+i accurate calculations gave
c/a 1.007). All the structural properties are found to
be in agreement up to a few thousandths of atomic units;
the mean square error in the formation enthalpies is 2.2
meV/atom. The discrepancies are mainly due to the rel-
evance of three-body contributions in the cluster expan-
sion of the energies of the luzonite and famatinite struc-
tures; the inclusion of a three-body nearest-neighbors
term in Eq. (2), fitted to the formation enthalpies of
those structures, would decrease the mean square error
to 1.1 meV/atom. This level of reliability for DFPT is

well within the overall accuracy of first-principles calcu-
lations, as it results from a comparison among several
calculations [4(b),9] performed with a variety of differ-

ent technical ingredients (all-electron methods vs differ-

ent pseudopotentials, parametrization of the exchange-
correlation energy, k-point sampling, and so on).

We have then performed Monte Carlo (MC) simula-
tions at the conditions of fixed pressure, temperature,
and difFerence in the chemical potentials b,p, with a cell
of 1024 atoms and periodic boundary conditions. In Fig.
1 we display the bond-length distributions for different
Ga concentrations as obtained from simulations at the
temperature of 1000 K, at which the alloy is miscible
and random. A bimodal pattern clearly emerges, char-
acterized by individual bond lengths (Ga-P and In-P)
which are close to their pure-compound values and sig-

ni6cantly diferent from the average, a characteristic fea-
ture of semiconductor alloys [10]. Our results are in close
agreement with the experimental data [11],with a lg off-

set due to the difference between the experimental and
theoretical values of the bulk lattice parameters. The av-

erage lattice parameter of the alloy resulting from these
simulations (full hne) closely follows the linear behavior
observed experimentally (Vegard's law); this result is by
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FIG. 1. Left panel: dependence of the bond lengths upon
composition for bulk Ga In1 P at 1000 K (empty dots, with
error bars far the variance and best-fit solid lines); experimen-
tal data are marked by asterisks. The average lattice param-
eter, scaled to the bond length, is also shown for the present
(solid line) and other approximate approaches (dashed and
dotted lines; see text). Right panel: bond-length distribu-
tions corresponding to several compositions; the arrcnvs indi-
cate the pure-compound bond lengths.

no means trivial and comes from an accurate balance
between microscopic and macroscopic relaxation efFects.
In fact, if we had neglected the efFects of disorder on
the average lattice constant (taking the lattice constant
of the concentration-weighted virtual crystal) or the de-
pendence of the interaction constants upon volume, we
would have obtained significant deviations from Vegard's
law (dotted and dashed hnes, respectively).

In order to determine the composition-temperature
phase diagram, the Gibbs free energy is calculated via a
thermodynamic integration [12]: the dependence of the
average composition x on b,p at any given temperature
is obtained from two sequences of simulations performed
for increasing and decreasing values of b,p (right panel
of Fig. 2); this relation is then inverted. and integrated
in order to obtain the relative &ce energies of the GaP-
rich and InP-rich phases. The phase diagram is extracted
determining the common tangent (that gives the coexis-
tence line) and the infiection points (spinodal line) of the
&ee energy curve [13].The system presents a model ran-
dom alloy behavior with a miscibility gap below a critical
temperature of T, 820 K, corresponding to a critical
composition x~ 0.4 (left panel of Fig. 2). The role of
the lattice mismatch (7% in the present case) is foremost
in determining the phase stability, due to the dominant
elastic term in the aBoy formation enthalpy.

The critical temperature and composition estimated
from experimental data [14] are T,"r 930 K, and
x',"~ 0.6. Zunger and eo-workers [4(b)]—who included
thr== Mad four-body terms in their cluster expansion for
the energy —obtained a closer agreement vrith these esti-
mates. Many-body terms can be included in our scheme,
either by pushing perturbation theory to higher orders
or by fitting some of them to self-consistent calculations,
in the spirit of a cIuster expansion; me thus examined
the @Feet of oar neglect of many-body interactions on
the alloy phase diagram. At the mean-field level, the
introductien of the Chr""-body nearest-neighbors inter-
action xnentioned above resulted in the Iovrering of TM
Rom 940 to 900 K and a shak of xM~ from 0.40 to

400
0.0 0.5
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FIG. 2. Left panel: phase diagram of bulk Ga In~ P. The
solid line (fille circles) is the coexistence curve; the dashed
one (empty circles) is the spinodal. Right panel: dependence
of the average composition upon the chemical potential dif-

ference.

0.47. Although the disagreement with experimental
data is thus reduced, we decided to maintain our orig-
inal perturbative approach based on the full two-body
expansion of the configurational energy [Eq. (2)] in view

of its simplicity and of the large uncertainties which af-

fect the experimental data [14]. The latter are in fact
obtained from an extrapolation towards the interface of
the concentration gradients in a segregated sample where
the two phases are still inhomogeneous.

All the formation enthalpies listed in Table I(a) for the
bulk (free-standing) alloy are positive, refiecting instabil-

ity with respect to segregation; a few structures are, how-

ever, more stable than the corresponding disordered al-

loy. Therefore, in fr=standing Ga Inq, P, spontaneous
ordering is favored at low temperatures with respect to
the random alloy, but taken over by the tendency to-
wards segregation which is induced by the large elastic
energy term. If segregation is inhibited in some way,
some ordered structures can appear at low temperatures
as metastable phases. This can be simulated in a MC run

by umbrella sampling a narrow window around a given
composition. For example, we were able to observe the
formation of chalcopyrite for T & 150 K upon slow an-

nealing from a homogeneously random sample.
When the alloy is pseudomorphically grown on a sub-

strate with a diFerent lattice parameter, the resulting
strain has the effect of stabfhzing some ordered structures
with respect to segregation [2]. This is shown in Table
I(b) where the formation enthalpies of the structures pre-
viously considered are now calculated supposing that the
in-plane lattice constant is constrained to that of a GaAs
substrate (a1 10 60 a.u. ) [15). We see that in this ease
not only are some ordered structures more stable than
the corresponding random alloy, but they are more sta-
ble even with respect to segregation; we expect therefore
the appearance of spontaneous ordering in the ephax-
ial phase diagram of Gam, In1 P. In order to substanti-
ate this hypothesis, we have performed MC simulations
for G~lnq ~P epitaxially constrained on a GaAs (001)
substrate, following the same approach used for the &ee-
standing a11oy. The upper panels of Fig. 3 display, for
two selected temperatures, the dependence upon Ap of
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FIG. 3. Upper panels: dependence of the average compo-
sition (z, full circles) and of the chalcopyrite order param-
eter (z, crosses) upon the chemical potential difference for
two different temperatures. Lower panel: phase diagram of
Ga In& P grown epitaxially on a GaAs (001) substrate. The
white region corresponds to a homogeneous random phase
(R); regions where one homogeneous ordered phase (chalcopy-
rite, n, or P) is stable are lightly shaded and regions where
two phases coexist are shaded in a darker tone.

the average Ga concentration, z, and of the chalcopyrite
order parameter, z; the latter is defined as the modulus
of the relevant Fourier coefficient —in the (120) star —of
the real-space density function (oR). At T = 140 K an
hysteresis cycle is clearly visible, corresponding to the re-

gion of the phase diagram (indicated by "R+Ch" in Fig.
3) where the alloy segregates in a chalcopyrite and an In-
rich random phase. On the right of the hysteresis cycle z
remains large, identifying a region (designated by "Ch" )
where a homogeneous chalcopyrite is the stable phase.
At a lower temperature (70 K) the phase diagram be-
comes richer, with several miscibility gaps corresponding
to different phases at 50%%uo, 75%%uo, and 81%%uo compo-
sitions. The low-temperature phases can be nucleated by
annealing the system in the appropriate range of chemical
potential differences, without any further constraint; as
expected, we found that the favored structure at x =0.5
is the chalcopyrite. In addition, unexpected new ordered
structures were identified for z = 0.75 and x = 0.8125;
these are listed in Table I and indicated in Fig. 3 with
labels n and P, respectively. These new phases are closely
related to chalcopyrite and can be obtained from it by pe-
riodically substituting a few In atoms with Ga ones. In
the lower panel of Fig. 3 we sketch the main features of
the epitaxial phase diagram, as obtained by the analysis
of the dependence upon Lp of the average concentra-
tion and of the different order parameters corresponding
to the three ordered structures. Finally, to double-check
the overall reliability of our findings, we have compared
the formation enthalpy of the cubic 0, phase as obtained
from a fully self-consistent calculation with our DFPT re-
sults. The two calculations agreed within 1.1 meV/atom,
which is again within the typical accuracy of DFPT.

Present address: SISSA, Trieste, Italy.
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