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Layered 3D high-T, superconductors exhibit Kosterlitz-Thouless- (KT-) like quasi-2D signatures, and
a decoupling of layers for T & T, has been suggested. A vortex-loop scaling approach to the layered 3D
XY model, with bare anisotropic coupling ratio yo

=—S&/Si, shows layer fluctuations are indeed
effectively decoupled, but only at finite scales a ~ro- yo&& I, where rectangular loops cutting single lay-
ers dominate. Finite-scale KT-like unbinding at "TKT"()o) & T,{) 0) yields quasi-2D signatures outside
a 3D critical region [(T—T, )/T, )=[a( [e, ( &)o ", where multilayer, elliptical tumb)ing loops dom-
inate, correlated over scales (- [s~ "&&ro

PACS numbers: 74.72.—h, 64.60.Cn, 74.25.-q, 74.80.Dm

Layered high-T, superconductors show quasi-two-
dimensional behavior [I], including strictly 2D Koster-
litz-Thouless (KT) signatures of vortex-point unbinding
[2]. It has been suggested, therefore, that the layers
decouple [3] above the transition temperature, T & T,
On the other hand, 3D critical scaling behavior has re-
cently been reported [4]. It is clearly of central impor-
tance to understand, in a unified picture, both effective
layer decoupling and the coexistence of 2D and 3D signa-
tures in layered superconductors.

The prototypical KT system is the 2D planar spin or
XY model [2], physically realized in a 2D Josephson
junction array (JJA), that has vortex-point topological
excitations. A 3D vortex-loop scaling approach has been
developed in the isotropic case [5,6], going beyond 2D in-

terlayer perturbations [7].
In this Letter we present a generalization [8] of

vortex-loop scaling to the anisotropic 3D XY JJA case,
and also calculate quantities related to experimental mea-
surement [1] and Monte Carlo simulations [3,9, 10].
These include the transition temperature, the superfluid
density (related to the vortex coupling at large scales),
the phase slip resistance (defined in terms of the vortex
loop fugacity), and the nonlinear current-voltage ex-
ponent (related to the finite-scale vortex coupling). We
find that, for nonzero bare interlayer coupling, the fixed
point is not 2D but [7] (isotropic) 3D: layers do not
decouple asymptotically. However, for strong anisotro-
pies, there is an effective finite scale layer de-coupling

that can produce observable quasi-2D behavior outside a
3D critical temperature region lj(T —T, )/T, (=(s( & )s, (.

Vortex-loop blowouts at T„suggested by Feynman and
Onsager in superfluid helium [5(a),6(a)], have been seen
in 3D XY Monte Carlo (MC) simulations [9,10]. T, is

raised [6(b), l 1] by imposition of an external vorticity-
suppressing chemical potential [11]. Thermally activat-
ed, tumbling vortex loops of mean diameter a-(—(T)
—(e~

" and renormalized fugacity yt —e
'

increase
in size on warming. The vortex intersegment potential is
of the Biot-Savart (-I/R) type. Loops can nest and
screen, and blow out [5,6] for T T,+ (g-,y ~),
with loop segments for T & T„correlated only over a
length (+—

I sl

PH = —g PZ„(cosh „dt —
1 ), (2)

with A„discrete derivatives in directions It =x,y, z, cou-
plings $ = (Zi, Ji,Z&), and angular variables tr ~ 6;
& —tr on a cubic lattice of constants ai a~ ao=1.

For the 3D JJA, d; are the superconductor-grain phases.
2„are the intergrain Josephson couplings ce I

—T/T, o
where T,o is the superconducting (grain) transition tem-
perature. Superconductor magnitude ~)it( fluctuations at
T,o are irrelevant for the intergrain phase coherence at
T, «T,o. Equation (I) can also be regarded as a weakly
(2&) coupled Ginzburg-Landau (GL) Lawrence-Doniach
[13] model, with in-plane coherent regions -ao coupled
by Z~~ and locked magnitudes [iy( ec 1

—T/ToL. Then

yo =&&/&i =Mi/M&, the ratio of the GL masses [13].
High-T, compounds are strongly anisotropic, with [1,3,7]
)o '=1.4X10 (thallium) and =0.2 (yttrium).

A standard dual transformation [14] casts the partition
function in terms of dual-lattice vortex segments J„(r)
=0, + 1, that form closed loops, [Lj:

gd,„J„(r)=0, VL. (3)

The vortex-loop [5,6, 10,14] partition function, sum-

ming over loop configurations, is [8]

Z = g +y(L) exp g pH(L. t.')

fJ(r)) L L&L'
config

The interloop segment-segment interaction is

(4)

For the anisotropic case, a new [12,13] "Hikami-
Tsuneto" (HT) vortex length scale ro appears, defined by
the inter(Z~)/intra(Si)-plane coupling ratio,

ro =ao)'o, fo ='&i—/&i,

where ao is the in-plane lattice constant. A strong anisot-
ropy regime is defined by ro»2ao, i.e., yo '((0.5. For
a & ro, closed elliptical Biot-Savart interaction loops of
major axis a dominate, crossing multiple layers. For
a (ro, quasi-2D rectangular loops with log-plus-linear
in-plane interaction dominate, crossing single layers.

The anisotropic 3D XY JJA Hamiltonian is [p= (ktt T) ']
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/jH =—g [K J (r) J (r')+K J (r)J (r')]U(r —r') (5)
2 ryltr

with the Jt (J~) vortex segments coupling through interlayer (intralayer) couplings K& (Kt). The vortex and cosine
couplings are taken to be proportional [6,8] K„=PS„ap, with a length scale absorbed in the coupling. Spin wave correc-
tions in 3D should be small for low temperatures (-T), and near transition [-(T, —T)]. The bare fugacity of a loop
L is determined by the intraloop segment interactions (-H ' ) and segment self-energies [-U(0)]:

yP =exp PH L'~ —U(0)P [K&(J~f(r)) +Kt(J (r)) ]
2 f

(6)

In (5) the interaction U is essentially the 3D lattice Green's function [8,10(a)] [R—= (Rt, Z)]:
f 3 lg R

(7)
(2a) [(4—2cosq, ap —2cosq„ap)+ yp (2 —2cosq, ap)l [(Rt/rp) +Z ] '

From the coordinate space form (7), it is clear that "equipotential" loop configurations are elliptical. (See inset, Fig. I;
a & rp. ) The bare ellipse fugacity, for in-plane major axis aL and minor axis aL[1 —e (aL)) ' making an angle aL with

the Z axis, is [8]

QL QL
yp (ai. ) =exp — z Kt ln (I —bpsin aL)'i (8)

ap ac

The ellipse eccentricity is e(a) = [b'pcos a/(I —bpsin a)] 'l with b'p—= I —yp, and a, is a core region cutoA' containing
hairpinlike transverse excursions of the loop from its average geometry [15]. The fugacity is peaked at a n/2, con-
sistent with the high-T, ideas of Friedel [16].

The nested loops tumble freely for scales a & rp, progressively screening the coupling anisotropy seen by the largest
-g- (T) loops. A detailed scaling analysis [8) shows that the renormalized anisotropy ratio (yp yi ) is asymptoti-
cally driven to unity, I —

yi '=(I —
yp ')e ' 0. (Asymptotic layer decoupling, by contrast, would imply yt

'-0-(,)
0.) The critical behavior is that of an isorropic 3D XY model.

The partition function at general minimum scale a =ape is then
P

Z= g Qyi exp ——KI g g J (r) J( )(r')U(r —r')
fJ) L 2 LwL' rer'

config

with a geometric mean as the bare initial coupling Kp= JK~Kt =Ktyp, and (dropped) differences between (9) and
(5) gotng [8] as -(I —

yj ) o. Scaling equations, derived as in the isotropic case f5,6), involve the angularly aver-
aged loop fugacity yi, where yp fpday p(a)/rr They a. re of the isotropic form, to 0((] —

yi ')):

K( =KI —ApyIKI,
l

= (6 —rr KILI)yI, (10)

wtth ~p 4& /3, Lr—= I+lnfa/a, (l)], and unchanged [6]
"fixed points" (Ki,yi )—= (K',y')-(0.3875,0.062) at
l=l —=In(g —/ap) ee. In a model for a scale depen-
dent core a, (l) (partially supported by numerical simula-
tions f15]), both diameter and core size (for a-g
—I~l ") diverge with a constant ratio a, (l)/a=KI',
where x 0.6 is a self-avoiding random walk exponent.
[Loop self-energies -a ln(a/a, (l)) then scale as -a.)
One finds [6] v=0.67.

Since the minor axis a [I —e (a)] 'i2 & ap, the tumbling
ellipse picture of (10) breaks down for a ~rp for strong
anisotropies. Loops are then of two types: (i) IIuxonlike
[17] loops not crossing planes (a constrained around
a= a/2) and (ii) quasi-2D, rectangular loops crossing
single planes [3(b)) by vertical unit sides. See inset, Fig.
I, a & rp. The vertical segments J~(r~~, zzr) =+ I,
J&(r(~,z) = —I have Jt sides of length Rg=—Irp r~II with
rp&Rt&2ap. From (5), (6), and (7) the yp

' 0 or
KT limit yields [6(c)] an in-plane logarithmic interaction
U(R) —U(0) 2U (Rt)bz p with
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FIG. I. Scaled 2D transition temperature T, =K& ~ ks elT&I

versus coupling anisotropy ratio KilKI-yo '. &pe»q»«s.
solid circles, and triangles are Monte Carlo data from Refs.
[3(b),9(a),9(b)I. Dashed and dotted lines as in text. (Inset:
Single-plane quasi-2D excitations for scales a &ro aoyo, and
multiplane elliptical loop at tilt angle a for a & ro.)
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dK (2D)

3g() (2D)(K (2D) ) 2

U (Ri) =In(Rt/ap)+)r/2+O((Rt/rp) ) .

The Ji energy in the fugacity (6) yields a linear efl'ective

potential, -2)rgp(Rs/ap —I ), between the J~ = + I

sides. The coeflicient Qp can be estimated in two opposite
limits. For yp

' 0, the U(R) interaction of Jt —Ji seg-
ments on quasi-2D loops is strongly screened by (in-
plane) fluxon loops [17] that are well above their own [8]
KT transition at Ks, ' —yp &&T, Th. us from (6), Qp= —,

'
Kp yp U(0). Neglecting Js screening, the I/R

interaction gives [8]

Q
~ K (2D)

y
—

1 ln (K *)
— —0.284K (»)

Similar linear potentials, —yp Ri but for all scales, arise
in modified 3D XY models [3] with alternate-plane vorti-
city suppression [11]that suppresses multiple-plane loops.

Scaling equations for rectangular loops of scales a & rp
are obtained [8] in the usual [2(b)t way from the parti-
tion function for single-plane (z'=z) variables J~(r,z)
x J&(r', z), with log-plus-linear interaction. They are of
KT-like form

0.8

0,6

Qg o.~

0.2

0.4 0.8 1.2

FIG. 2. Scaled superfluid density p (T)/Ki versus scaled
temperature T=Ki ' for—various anisotropies yo '=(K~/Ki)'~ .

Dashed line is MC result for yp
' 0.14. [Inset: Current-

voltage exponent a xKi(2o) (T) versus T/T, (yp) with lo

=ln(yp) for yo
' 1.4x10 2 (solid) and 0.2 (dashed). Solid

and open arrow heads denote TKT in the two cases. ]

(2D)
yI -[4 2'(K" '+g—pr.')]yl" '.

Including effects of 2D spin waves [18] (stiff up to
T- TKT), the bare a =ap inputs are the coupling
Kp =Ki/[I+ I/(2Ks)], J~=+' I pair fugacity yp(

=exp( —)r Kp ) and (say) Qp= & K D
y U(0).

The renormalized pair fugacity (i.e., rectangle popula-
tion) is found to vanish rapidly, yI( ) 0, beyond
I lp=ln(rp/ap).

In the strong anisotropy regime yp & 0.5, (10) is valid

for 3D ellipses, a & rp, and (11) is valid for quasi-2D rec-
tangles, a & rp. KI(,yI, from (11) are therefore
handed over at l=lp to (10) as the inputs K(„yl,. (The
a & rp quasi-2D T dependences that are thus fed in can
control noncritical T dependences of fugacities for a
& rp. ) In the weak anisotropy regime yp

' & 0.5, (10) is

used throughout, since elliptical loops of all scales tumble

freely, and quasi-2D excitations are not well defined

(rp & 2ap).
T, is evaluated in all cases from the change in (3D)

asymptotic scaling flows (solid line, Fig. I). The MC
data [9] match T, reasonably well. If the weak anisotro-

py procedure is erroneously used even for small yp 0,
then T, is driven to zero (dashed line). The dotted line is

from "approximate self-duality" [10(a)]. The dash-

dotted line is TKT(yp), defined through SKI, (TxT) =2
for a fictitious finite-scale (&rp) "unbinding" of the
quasi-2D excitations.

Armed with (10) and (11),one can numerically calcu-
late the layered superconductor/anisotropic JJA quanti-
ties.

The dimensionless (isotropic case) superfluid density,
at finite scales, is the vortex coupling with an absorbed
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length scale removed [5,6], pI—=Kt/a. Figure 2 shows, for
various yp

' values, the infinite scale p /Ki versus scaled
temperature T=Ki '. (i)—There are rapid roll-offs but

not 2D jumps, at (not shown) temperatures Tt(T(yp), that
are near the (dash-dotted) 2/z slope KT line. (ii) The
only singular behavior is at T„p —~e~ . (iii) The

yp =0.02 3D XY MC simulations [3(b)] (dashed line)

are matched reasonably well.
In strictly 2D, a current drive I unbinds T & TxT

paired vortices, for length scales beyond rl- I/I, yielding

power law current-voltage dependences [I], V-I '+',
where a =mK~ ~ 2 as T TKT and a =0 for T
& TKT. In 3D, if rl & rp, a similar current-induced

quasi-2D excitation depairing of J& = ~ I should yield a
finite-scale exponent a =rrKI, (T), with a(TKT) =—2.

The inset of Fig. 2 shows this a versus T/T, (yp) =(T/
T~)(l T~/Tcp)/(I T/Tcp) for yp

' =I.4x IO, 0.2. a
is smooth through TKT, similar to the high-T, experi-
ments [I].

The 2D resistance due to phase slips across an are»s
R(2D)-(+ 2, where the intervortex separation g+ =n; '

is related to the single-vortex areal density n; =yI' /it

a suitable, large I scale [I]. The 3D case phase-slip resis-

tance in the plane, including interplane vortex-segment
lockings over -g+, is R -R g+ -g+ '. Here
=n, '/ is re, lated to the asymptotic (I ~), single-

segment volume density n, yI' /a . , Figure 3 shows the

scaled 3D resistance log)p[R(T)/R(~)] versus scaled

temperature T/TKT 1.09Ks '(T), for widely difl'ering

yp
' values (where TKT' =1.09 for the strictly 2D case).

All curves fall close to the 2D yp
'=0 curve. This is

similar to "universal resistance scaling" of Minnhagen,
found [3] for film and superlattice data. The inset shows
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FIG. 3. Scaled phase-slip resistance logia[R(T)/R(~)]
versus scaled temperature variable T/Txr= I.091''i '(T) for

yo
' values as shown. (Inset: logia[R(T)/R(~)] versus r

=[(T/Txr) —I] ' for yo
' 0, and other values as in main

figure. )

—2—

—2
0

a KT-like linearity [1] of logic [R(T)/R(~)] versus
'/ —[(T/TrT) —1] '/2 before critical behavior [4]

R- ~a~
" sets in for ~a( & e, & yo

'/", where log-log plots of
the resistance curve give v=0.67.

Thus quasi-2D behavior in layered superconductors is

understandable through a 3D vortex-loop sealing, without
invoking new nonvortex solitons [1(b)] or complete layer
decoupling above T, . These XY inodel results should
remain essentially unchanged by internal gauge field

effects, consistent with (isotropic case) simulations [19].
Since the magnetic flux line generated by circulating vor-

tex currents must follow the topological vortex line, the
self-generated net magnetic field of closed-loop quasi-2D
excitations is weak, and confined to an interplane London
penetration depth.

Further work could include the incorporation of exter-
nal gauge fields (flux lattice), MC work to detect quasi-
2D excitations, comparison of the model results with
high-T, data, experimental search near T, for 3D ex-
ponents, and measurements in micron-scale anisotropic
3D JJA constructed by appropriately stacked 2D arrays.
Since the signatures seen are of 3D XY phase vortices, in-

teracting fermion models that naturally generate JJA-like
quantum phase coherence variables [20] are worth ex-
ploring further.

In conclusion, an anisotropic 3D XY vortex-loop scal-
ing approach shows that 3D critical behavior, induced by
multiple-plane 3D loops, can coexist with noncritical
quasi-2D KT-like behavior, induced by finite-scale,
single-plane loops. Excitations behave as though layers
are quasidecoupled at small scales and isotropically cou-
pled at large scales.
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