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Higher Order Collisionless Ballooning Mode in Tokamaks
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Kinetic stability analysis of general electromagnetic modes in tokamaks has revealed the existence of
higher order ballooning mode which is not subject to second stabilization. The kinetic ballooning mode
in the magnetohydrodynamic (MHD) second stability region is characterized by eigenfunctions in the
ballooning space much broader than that of MHD modes. The ion temperature gradient (g;) provides
the dominant destabilization mechanism.

PACS numbers: 52.35.Fp, 52.35.Kt, 52.55.Fa

The ideal MHD (magnetohydrodynamic) ballooning
mode in tokarnaks has almost exhaustively been inves-
tigated as one of the plausible candidates to impose a
limit on the plasma pressure gradient that can be con-
fined stably. Following the numerical discovery of low
n (the toroidal mode number) ballooning mode [1,2] and

the advent of the ballooning transformation for high n

ballooning mode [3—5], the existence of the so-called
second stability regime at a sufficiently large pressure
gradient has been predicted [6—8]. Currently, some ef-
forts are underway to realize tokamak discharges in the
second stability region. The ideal MHD ballooning mode
is subject to the usual MHD assumptions, including E~~

=
0 (sufficiently large plasma conductivity), (to[ » co., toD

(the diamagnetic and magnetic drift frequencies, respec-
tively), and long wavelength nature, (kzp) « 1, where

p is the ion Larmor radius. These assumptions tend to be
dubious at marginal stability where the eigenfunction in
the ballooning space becomes broad. Both coD ~ s8 sin8

and k2~ = ke [I + (s8 —u sin8) ] rapidly increase with
8 (the extended poloidal angle), and for more satisfactory
stability analysis of the ballooning mode, a kinetic the-
oretic approach is required. [The two-fluid approach to
the ballooning mode [9] is still subject to the assumption
(ki p) « 1, although the constraint on the frequencies
has successfully been removed. )

In order to assess kinetic effects on the conventional
MHD ballooning mode based on two-potential approxi-
mation, the scalar potential P and parallel vector potential

A~~, we consider a tokamak discharge with circular mag-
netic surfaces with the Shafranov shift. For simplicity, the
compressional Alfven (magnetosonic) mode and trapped
electrons are ignored. Kinetic effects manifest themselves
mainly in the ion density perturbation. For a Maxwellian
ion velocity distribution in a low P discharge, the ion den-

sity perturbation can be evaluated from the gyrokinetic
equation,

where

eP to + to.;(v2) 2/ki vg &, / v)( & e
n; = — np+

T; to + toD;(v) —
kiiuii k 0; j k c j „T;

Tg (Mv 3 i
to*(&2) = I+ all ——

I [V(inno) x 8] ke,eB & 2T) 2) (2)

toD;(v) =
3 ~

—vi + v~~ 1(&B X &) ' k2,
~c 1

eB3 E2 j

are, respectively, the energy and velocity dependent diamagnetic and magnetic drift frequencies, Jp is the Bessel
function, and (. . )„indicates velocity averaging with a Maxwellian weighting. For modes in the compressible regime,
~to + toD;( » k~~vT, (vT, the ion thermal velocity), the ion density perturbation becomes electrostatic,

eP to + to.;(v') 2 eP eit
n; = — np+ Jo no = [—1 + I;(8)] no,

T; + toDi (v) v Ti Ti

where for circular magnetic surfaces with the Shafranov shift assumed in this study,
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with

I 8 = „* Jp
cu + ~.;(v'), k~(8) vg&~

M + Mo&(v, e) Q~ ) v

Mckg & 1
m;(v, e) =

~

—u„+v() ~[cose + be —u»ne)»ne].
eBR & 2 )

k2~ = ke2 [1 + (se —u sine) ],
8 is the extended poloidal angle, and u is the ballooning parameter, u = —

q R dp/d» = q Rp(I + rr) /L„p«»ded
T; = T„g;= g„aswill be assumed. Here, L„is the density gradient scale length. Guided by the fluid ion density
perturbation in the long wavelength limit derived by Jarmen, Andersson, and Weiland [10], we have found that the
following ion density perturbation provides a reasonable approximation which at least qualitatively agrees with exact
velocity integral:

7
ep (~ + 3 ~oi)(rp + ~*i) rri~ i~os

n; = — np+, 2,p, e Ip(A)—
T' (~+ 3~or) 9~o

5
7rj(co + 3 cpoj)If04jIL

)p 2
e (Ip —I)) np,

3 ~oi) 9 ~oi

where

coo, (8) = "cu.;[cose + (se —usine)sine], A(8) = —' [I + (se —u sine) ],2L„ T; kg 2

R M Q;

and Ip t [A(8)] are the modified Bessel functions. Equation (8) may be used for analytic formulation of kinetic ballooning
mode. However, in the present numerical investigation, the exact velocity integral in Eq. (4) is employed.

The electron density perturbation in the adiabatic limit ~cu~ && k~~vT, is

n; = ~ —cu., e
A()

—np. (10)

In the regime under consideration ((cu + coo; ) » k~~uT;), the parallel current is largely carried by electrons,

npe g q (~ ~+e) (~ ~oe) + Qe~*e~oe
(Et' eg QJ ) +

Te
A()

From the charge neutrality n; = n„and parallel Ampere's law, V2A~~ = —(4m/c) J~~„we readily obtain the following
mode equation for P:

d 2 d@1
de [

[1 + (se —u sine) ] ~ +
d8 l 4e„(1+ rr)

(II —1) [II —f(8)] + q,f(8)—(II —1)'
2 —r, (e)

(12)

where T; = T, has been assumed (so that cu., = or.;, coo, ——coo;), 0 = cu/cu. , and

f(8) = 2e„[cose+ (se —u sine) sine].

In the limit of ~cu( && ~., ruo, and A && 1, Eq. (12) readily reduces to the ideal MHD ballooning mode equation

d 2 d4 2

de I
[1 + (se —u sine) ] + u[cose + (se —u sine) sine] @ +

~
~

[1 + (se —u sine) ]p = 0,de| kwA)
(14)

where co~ = Vz/qR is the Alfven frequency.
Equation (12) has been solved numerically with a

shooting code for even parity modes. The shooting
distance 8

„
is typically 40, but has been varied to ensure

that the eigenvalue 0 is independent of 0 „.- Figure
1(a) shows the growth rate and mode frequency both

normalized by the Alfven frequency when L„/R = 0.175,
(kgp) = 0.01, s = 0.4, q = 1.2, 7r, = rr; = 2. (These
parameters are the same as in Fig. 4 of Ref. [9],obtained
from two-fluid approximation to facilitate comparison. )
For comparison, the growth rate of the MHD ballooning
mode found from Eq. (14) is also shown. In addition to
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the MHD-like mode labeled 1 th ere coexists a second
e second stabilitymode (2) which persists in the MHD

region with growth rate comparable to the MHD m
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been noted b Chen
as earlier
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transit frequency k~~vT; also remains small compared with
the Doppler shifted frequency ~co + coo;(0)) particularly
for the kinetic ballooning mode characterized by a broad
eigenfunction. [Note that the magnetic drift frequency is

oscillatory secular at large 8, coD;(8) ~ s8 sin8. ] We thus

believe that a11 of the effects ignored in the present inves-
tigation should not qualitatively modify the growth rate.

In conclusion, a kinetic collisionless ballooning mode
of a second kind has been found in the second stability
regime. It is characterized by broad eigenfunctions in

the ballooning space, and destabilized largely by the ion
temperature gradient. Also, the first stability boundary
revealed from the kinetic analysis is significantly smaller
than predicted from the ideal MHD analysis particularly
at small magnetic shear.
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edged with gratitude. This research has been spon-
sored by the Natural Sciences and Engineering Research
Council, and by the Office of National Fusion Program,
Canada.

FIG. 3. Stability diagram in the (s, u) plane when g, = ri, =
2. The dashed line shows the stability diagram of the ideal
MHD mode.

second ballooning mode with a broad eigenfunction
has not been found. The reason may probably be in

truncation of the ballooning variable 8 at too small a
value. (In Ref. [13], the eigenfunctions of the modes
discussed in Ref. [12] are presented. They are confined
in the region [8) ~ 2m, and can be well approximated by
the MHD mode, P = 1 + cos8.) As shown in Fig. 2, the

eigenfunction of the second mode is much broader and

extends to 8 = 30. In our differential formulation, the

kinetic ballooning mode can be revealed only when the

shooting distance is chosen at a sufficiently large va1ue.

In this study, trapped electrons, magnetosonic pertur-

bations, and ion transit frequency are all ignored for the

purpose to reveal ion kinetic effects on the conventional
ideal MHD ballooning mode. The trapped electrons may
induce corrections of order ~e where e = r/R is the in-

verse aspect ratio. Since the second stability is of prac-
tical interest at small shear s which pertains to the core
region, ignoring the trapped electron is justifiable in light
of the large growth rate of the kinetic ballooning mode
found in the second stability region. Effects induced by
the magnetosonic mode is at most of order p which is
also a small correction. For example, the second stabil-

ity threshold u = 0.6 at s = 0.1 corresponds to p; (the
ion beta) = 1.5% for the parameters in Fig. 1(a). The ion
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