
VOLUME 72, NUMBER 25 PH YSICAL R EV I EW LETTERS 20 JUNE 1994

Polarizing Stored Beams by Interaction with Polarized Electrons
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A polarized, internal electron target gradually polarizes a proton beam in a storage ring. Here we
derive the spin-transfer cross section for e (p, p)e scattering. A recent measurement of the polarizing
efFect of a polarized atomic hydrogen target is explained when the effect of the atomic electrons is
included. We also consider the interaction of a stored beam with a pure electron target which can
be realized either by a comoving electron beam or by trapping of electrons in a potential well. In
the future, this could provide a practical way to polarize antiprotons.

PACS numbers: 29.27.Hj, 13.60.Fz, 29.20.Dh, 29.25.Pj

Storage rings are important tools in particle and nu-
clear physics research [1]. They are used for beam pro-
cessing and subsequent slow extraction, as well as for
experiments with thin, internal targets. Ring designs, al-
most always, incorporate a means of phase space cooling
such as stochastic cooling [2] or electron cooling [3]. The
study of spin dependence in nuclear reactions requires
stored, polarized beams, and their behavior in rings has
recently been studied in detail (see Ref. [4]).

Beam storage times in a ring can be hours or even
days. During that time, stored particles orbit with fre-
quencies of the order of several MHz, and small, additive
spin-dependent interactions may affect the polarization
of a stored beam. In one of the methods, which has been
proposed, inhomogeneous magnetic fields gradually split
the stored beam into components of given magnetic sub-
states [5]. Another method utilizes the spin-dependent
interaction of the stored ions with an aligned internal
target. This scheme, also known as "filter method, " has
recently been tested at the TSR ring at the Max-Planck
Institute in Heidelberg [6]. In this test, an initially unpo-
larized 23 MeV proton beam interacting with an internal
polarized hydrogen target was found to acquire polariza-
tion Ps at the rate of dP~/dt = 0.0124 + 0.0006 per
h. An attempt to explain the measurement was made by
considering selective beam loss due to the spin-dependent
part of the strong, pp total cross section, which, at this
energy is 2[o (ft') —o(J.))] = —122 mb. The minus sign
signifies that stored ions in the spin-down substate are
lost more rapidly. The spin-up polarization of the sur-
viving beam, calculated this way, is about twice as large
as the measurement [6].

Let us now turn to a discussion of the interaction of
a stored proton beam with a polarized, internal electron
target. First, we derive the cross section for polarization
transfer in e(p, p)e scattering. The calculation is car-
ried out in the center-of-mass frame. The initial electron
polarization is along i, the scattered proton is polarized
along j, where i, j are unit vectors expressed in terms of
the basis vectors l (longitudinal), m (sideways), and n
(normal to the scattering plane), as defined in Eq. (2.2)
of Ref. [7]. We write m„and p and k for the mass and

the initial and the final momentum of the proton, and,
respectively, rn„p„and k, for the electron.

Starting from the expression for the center-of-mass
cross section as given in Eq. (B.l) of Ref. [8], we write

do' msdnK- = 4.:]M"i

4xn. —
M =

z iUkI'pUpUk. Vga. , (2)

where q„= A:„—p„ is the momentum transfer to the
proton, and I'„= p& + A&2 ""q with A& = 1.793, the
anomalous moment of the proton. The square of Eq. (2),
summed over the spin of the final electron and averaged
over the spin of the initial proton, can be calculated in
standard fashion [8]. The result is

do 2(1+A„)m, , q Sq S;
)Ksee;= —n z" ' S, S;—

g~mp

Here Ss and S; are unit four-vectors describing the spins
of the final proton and the initial electron along j and
i. The average (4(S;,Ss)) in Eq. (3) is calculated
according to the prescription (4(S;,Ss)) = z(4+i +
4 —O+ —4 +), where the first sign in 4 ~~ indicates
whether S; points in the direction of, or opposite to, i .

th

The second sign is analogous for Sz and j. For i = j = n
as well as for i = j = l, one finds (4(S;,Ss)) = —2 [8].
For i = m or j = m (4(S;. , S~)) = 0. This gives

do nz(1+ A„)rn,

2p, m„sin (8/2)
also Kippi = K pp, and K pp = 0. Here p, is the
momentum of the electron (in the center-of-mass frame).

(4)

where Ksoo; is the spin transfer coefficient f om the tar-
get to the projectile (formally defined in Ref. [7]), and
M,~ is the invariant matrix between the appropriate spin
states in the initial and final state. First we evalu-
ate the matrix element in plane-wave Born approxima-
tion (PWBA), and later we will discuss the inclusion of
Coulomb distortions. The PWBA matrix element M is
given by
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One also has Kazoo; = 0 for i g j and

Apo~, = K~pp, ,
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where T is the temperature of the electron gas. As an

example we take kT = 0.1 eV and n, = 10io cm s, so
that

2p, sin(8, „/2) = 1/A. (8)

For an atomic target we take the screening distance to
be the Bohr radius,

A~ = ap = 52900 fm (atom). (9)

Alternatively, for a pure electron target the screening
length depends on the electron density n, and can be es-

timated as the Debye length, A = AL& = (kT/47ro. n, ) ~
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where Aoo~, is the correlation coefBcient between the ini-

tial electron and proton spins; see Ref. [7].
The maximum scattering angle of a proton from an

electron at rest is m, /m„= 0.54 mrad. This is well

within the acceptance angle of any storage ring, thus pro-
tons scattering from electrons stay in the ring. Therefore,
we are interested in the total spin cross section,

do'
K~oo; dQ (6)

e&oman

When Eq. (4) is used in Eq. (6), the total cross sec-
tion diverges logarithmically for 8 ~ 0. However, Eq.
(4) must be modified at very small angles because of the
screening of the Coulomb field caused either by the pro-
ton in the same H atom as the electron or by the other
electrons in a dense, pure electron target. This intro-
duces in Eq. (6) a cutofF at a minimum scattering angle
8~;„. In the above calculation we have evaluated a quan-
tum effect which is proportional to the interference of the
Coulomb and hyperfine amplitudes. The classical effect
(proportional to the square of the hyperfine interaction)
is very small.

For an atomic hydrogen target, beam protons interact
with both electrons and target protons. For momentum
transfers much greater than one over the Bohr radius ap
we expect incoherent scattering from "almost free" con-
stituents. If the electron and proton are both polarized
in the same direction (spin-one atom), then

d(T da' dO'

d~K, oo'[aiom = d~K~oo'lpp+ d~K~oo, le~ (7)

for momentum transfers q » 1/Gp, while for smaller mo-

mentum transfers q ( 1/ap the projectile sees a neutral
atom and the cross section is suppressed, zz K~pp, [,q,
0. The pp transfer cross section [first term in Eq. (7)] has
important contributions from Coulomb-nuclear interfer-
ence. This will be discussed in another publication [9].
Here, we focus on the ep cross section (and drop the ep
subscript in the rest of this paper).

At large impact parameter, the Coulomb field of the
target electron is screened and there is no interaction.
This can be taken into account by cutting ofF the inte-
gration in Eq. (6) at a minimum angle, 8;„.We define

e~;„so that the minimum momentuxn transfer is the in-

verse of the screening distsnce,

Aii —10'o fm (plasma).

This expression is valid even at high energies where the
electrons (in the center-of-mass frame) are relativistic.

At low energies, corrections from Coulomb distortions
become important. The use of distorted waves in the
Born approximation (DWBA) modifies the plane-wave

result in two ways. First, the matrix element of the
short-ranged hyperfine interaction is enhanced by (ap-
proximately) the square of the Coulomb wave function at
the origin, Co ——2m'/[exp(2m') —1], where the Coulomb
parameter rl = —zo./v depends on the beam charge z
and the relative velocity v. Second, there is an angle-

dependent relative phase between the Coulomb and the
hyperfine amplitudes. Together, these effects are respon-
sible for an additional factor D on the right-hand side of
Eq. (4),

D = Cocos(rl in[sin (8/2)]). (12)

Including this factor in the integration in Eq. (6) yields

4mnz(l+ A„)m, z f v I . 2~

(13)

For antiproton-electron scattering, Co is simply evalu-

ated for a positive g parameter. The spin transfer cross
section o„„Eq. (13) for scattering of protons from trans-
versely polarized electrons versus the laboratory kinetic

energy is shown in Fig. 1. Note that other transfer
cross sections are simply related to a„„by o.tt ——0.„„
and cr~~ = 0 [see below Eq. (4)]. The magnitude of the
plane-wave result (dotted line) for a pure electron target
is larger than for an atomic target because for the latter
the screening length is smaller and the integral over angle
cuts ofF at a larger 8 .„.Taking into account distortions
leads to the solid hne in the case of stored protons, and
the dashed line for antiprotons. For an atomic target,
distortions ax'e xxlalxlly described by C0 anti leaci to aIl

enhancement (with respect to the PWBA result) of u„„
for p, and a suppression for p. The situation. is difFer-

ent for a pure electron target for which (in our simple
approximation) the screening length is much larger and
the Coulomb phase is significant at the lower end of the

Note that this is a simple estimate: the screening may

depend on the electron velocity distribution, the relative
velocity between the protons and the electrons, and pos-

sible magnetic fields.

Using Eqs. (4), (6), and (8), the total cross section can
now be evaluated,

4~c '(1+ A„)rn, ,
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FIG. 1. Spin transfer cross section cr„„ in ye scattering
versus beam kinetic energy Q b. The dotted curves are
plane-wave Born approximation (PWBA) results, Eq. (11),
which are the saxne for protons and antiprotons, vrhile the
solid and dashed curves are approximate distorted-wave Born
approximation (DNBA) calculations, Eq. (13), for protons
and antiprotons, respectively. The upper three curves give the
electronic contribution for an atomic hydrogen target while
the lour curves are for a pure electron target.

angle integration. This reduces o„„,and below 2.5 MeV
causes a sign change. Indeed, in the limit of very small
relative velocities the Coulomb phase averages to zero,
insuring the correct (small) classical limit. We nate that
still, the transfer cross section can be as large as 1 b.

As a beam circulates through an internal polarized
electron target the polarization Pg of the beam changes
according to [9]

= (1 —P~)fdP, o. (14)

Here f is the orbit frequency af the beam (of order 10s
Hz), d the target thickness (particles per unit area), P,
the electron polarization, and 0' the spin-dependent cross
section averaged over the orientation of the scattering
plane. Note that Eq. (14) implicitly contains the equality
of Eq. (5). For an electron target polarized transverse to
the beam we have o = z(o„„+n~~) = 0„„/2, while for
longitudinal electron polarization o = Oii = o„„,where
o„„is given by Eq. (13).

Let us now consider polarized target electrons as they
occur in a polarized internal hydrogen target. Such a
situation was realized recently at the TSR in Heidelberg
[6] where a 23 MeV proton beam interacted with an in-
ternal target of 6 x 10is polarized hydrogen atoms per
cm2. Using Eq. (13), we find for this case cr„„=—140
mb, or cr = —70 mb. This implies a large electronic
contribution to the beam polarization by a polarized hy-
drogen target which is of the same magnitude as the ex-
perimental result [6], but of opposite sign. This result
has to be combined with the eEect of the polarized tar-
get protons which contribute by selective spin state re-
moval and by Coulomb-nuclear interference scattering, as
is discussed in Ref. [9]. When this is taken into account,

excellent agreement with the TSR measurement results

[6,9]. Thus, the existence of the efFect of a polarized elec-
tron target on the polarization of a stored beam seems
to be established experimentally.

The efFect which is discussed here is clearly important
because of its consequences in planning and analyzing fu-
ture precision experiments with polarized, stored beams.

Another, more speculative, consequence of electron-
induced polarization is its possible use in polarizing
stored antiprotons. Polarized antiproton beams are of
great interest in nuclear and particle physics, but none
of the many methods that have been proposed in the
past [10] has proven practical. In the following, we spec-
ulate on exploiting the relatively large spin transfer cross
section in ey scattering (see Fig. 1) in polarizing antipro-
tons.

In an atomic, polarized target (with both electrons and
protons polarized) one has to contend with beam loss
due to NN scattering. The beam lifetime is character-
ized by the so-called loss cross section [ll]. After one
lifetime, 1/e of the original beam intensity remains, and
the value of the beam polarization is determined by the
ratio between the polarizing cross section 0' and the loss
cross section OL, . At low energy, where o'L, is dominated
by Rutherford scattering, this ratio increases with beam
energy. However, above about 1 GeV, the major contri-
bution to oI, is from the weakly energy-dependent strong
interaction, while o is due only to the polarized electrons
and continues to decrease [Eq. (11)]. This poses a fun-
darnental upper limit of a few percent for the attainable
polarization at the end of a beam lifetime.

Pure electron targets could be provided either by a
comovtng electron beam, similar to an electron cooling
arrangement, or by electrons trapped in a potential well.
The larger screening length in an electron gas raises the
spin cross section by about a factor of 3 (see Fig. 1). The
absence of a nuclear target leads to long beam lifetimes,
bounded only by the quality of the ring vacuum. How-
ever, phase space cooling is still necessary to attain the
long lifetimes and to counteract beam emittance growth
caused by the electrons [11]. The task of providing a
dense, pure electron target is a technical problem, and
there are no fundamental limits in its use to polarize an-
tiprotons.

A comoving, polarizing electron beam may be simi-
lar to an electron cooling beam, but the design con-
straints are difFerent, since low beam temperature may
be traded for intensity. Clearly, such an arrangement re-
quires a high-intensity, high-duty-factor, polarized elec-
tron source, but the recent, rapid development [12] in-
dicates that this technical limitation may be overcome.
One advantage of a comoving beam is the possibility to
choose the best relative energy between the protons and
the electrons (about 5 MeV, see Fig. 1), while keeping
the energy of the stored beam high to ensure a long life-
time. If it were possible to prepare an electron-beam
target with P, = 0.5 and of the same number density as
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the atomic target discussed above, the resulting polariza-
tion rate would be 7.5% per h which would be feasible
for polarized beam preparation.

Trapping of electrons in a Penning trap has been used
as a diagnostic tool in the Indiana Cooler. A realistic
extrapolation of the performance of such a device yields
a target thickness of 10iz electrons per cm2 [13]. This
is still less than the electron thickness of an internal hy-

drogen target. But the task of developing a high-density
electron trap for use in nuclear physics is new and one has
to look to future advances in this area, perhaps borrow-
ing from techniques developed for plasma confinement in
nuclear fusion. For a trap in which electrons can be accu-
muLated, the requirement on the source of polarized elec-
trons is less demanding. If a polarized trapped-electron
target of thickness 10 s cm were available in the TSR
ring with its present performance [6], 5% antiproton po-
larization would be achieved at the end of one lifetime.

In this paper we have found a surprisingly large spin-
dependent electromagnetic effect, arising from an inter-
ference of the hyperfine amplitude, containing the prod-
uct of the magnetic moments of the electron and the pro-
ton with the Coulomb amplitude. The effect is enhanced
because of the singularity at q = 0 and because of the
large m„/m, mass ratio. The present calculation is sup-
ported implicitly by the result of the TSR experiment
[6,9]. Using currently existing equipment, the calculation
could be further tested by singling out the contribution
from the electrons either by using a polarized hydrogen

target in atomic spin states that differ only in the polar-
ization of the electron, by using a mixture of spin states
with polarized electrons, but zero proton polarization, or
by choosing the beam energy such that the polarizing
effect from the pp interaction is small.

In the present work we use a simple estimate for the
effect of screening. Clearly, at small scattering angles
and low energies this part of the calculation is critical

for atomic hydrogen as well as for pure electron plasma
targets. It is important that the treatment of screening
is refined and that the role of distortions and of external
magnetic fields is studied in more detail.
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