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Three-Dimensional Laser Cooling of Stored and Circulating Ion Beams
by Means of a Coupling Cavity
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It is shown theoretically that a coupling cavity (namely, an rf cavity operating in the TM2&o mode)
inserted into a storage ring will enhance the coupling between longitudinal and transverse degrees of
freedom. As a result, the demonstrated very effective laser cooling of the longitudinal motion can now
be extended to transverse motion; i.e., employed to cool a beam in all three directions.
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Laser cooling [1] of stored, circulating ion beams is
remarkably effective [2, 3]. Longitudinal temperatures
in the mK range have been achieved with a beam of
100 keV Li' ions [3]. The transverse temperature is,
however, on the order of 1000 K. To date, no effec-
tive method has been developed to realize simultaneous
cooling in both the longitudinal and transverse directions,
although a possible transverse cooling method was sug-
gested some time ago [4]. We propose, in this Letter,
the use of "coupling cavities" to couple the transverse
and longitudinal degrees of freedom and thus to allow
laser cooling in the longitudinal direction to simultane-

ously cool the transverse motion. The use of such a
cavity was suggested by previous work, where "condi-
tioner cavities" were developed to condition a beam, and
therefore make it much more suitable, for free-electron
lasers [5].

The idea is based upon developing a forced synchro-
betatron resonance where the transverse tune vT and
the longitudinal tune vL satisfy the condition vT —vi, =
integer. The coupling is induced by a coupling rf cav-
ity set on a storage ring. The cavity is excited with
a specific mode whose longitudinal field component has
a transverse-coordinate dependence; here we consider
the TM2&0 mode which gives very effective coupling.
In principle, it should be possible to cool transverse
beam temperatures to the same order as the longitu-
dinal temperature, whose achieved level now is below
about 1 mK, as mentioned above. If this kind of ul-
tralow temperature beam becomes available, we might
then consider some important applications of such a
beam. First, especially for nuclear physics applications,
we could use the cooled ion beam to cool another
beam just as in the electron cooling scheme [6]. Sec-
ond, the achievable level of beam temperature should
be theoretically sufficient to observe beam crystalliza-
tion [7].

For the coupling cavity, consider a rectangular rf cavity
which has a width of 2a and the height of 2b. For the

Here, V, corresponds to the maximum voltage of excited
field and P, is the initial rf phase. The oscillation
angular frequency co, is given by (n./a) + (n./2b)
(co,/c), where c is the speed of light. Note that,
in the coupling cavity, the longitudinal electric field
is proportional to transverse displacement (and zero on
axis). The transverse electric field is zero, but there are
transverse magnetic fields. These electromagnetic fields
are derivable from the vector potential

V, . &~x& t'~y& .
A, = 0, 0,

'
sin ~cos~

~
is(neat + P,)Ea) &2b)

(2)

In addition, we also have an rf bunching cavity whose
vector potential is

Aq =
~
0, 0, sin(cot, t + Pq) ~,

~b )' (3)

where Vb and cub are, respectively, the voltage amplitude
and angular frequency of the bunching cavity, and P& is
the initial rf phase.

The Hamiltonian for the coupled motion caused by
the coupling cavity can be readily obtained. Since the
derivation including effect of an rf cavity has been
presented previously [8), we only recall the result here.
For simplicity, it is assumed that the storage ring has
a single coupling cavity and a single bunching cavity.
Taking the distance s along the reference particle orbit
in a storage ring as the independent variable, instead
of time, and considering only dipole and quadrupole
magnets installed on the ring, we obtain, together with
the vector potentials in Eqs. (2) and (3), the approximate

TM 2yo mode, the longitudinal electric field component is
obtained from the Maxwell's equations as

E, = —V, sin~ ~cos~ ~cos(to, t + P,). (1)
. &m.x& (n.y&

Ea) 2bi
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Hamiltonian

Hi = p + (pp —p) —+ +x p2 ppK(s)x'

p 2p 2

qVb
sin(~br + fb)&~(s —sb)

Mb

mqV, x' —sin(cu, r + @,) Bp (s —s,), (4)
cu, a

where q and p are, respectively, the charge state of
stored ions and the local curvature of the orbit, K(s)
corresponds to the quadrupole field strength, B~(s) denotes
a periodic delta function, and we have assumed that the
bunching and coupling cavity are located at the position
sb and s„respectively. Writing the total energy of a
particle as 8', the total momentum p is expressed as

p = [(W/c) —mo 2c2]" where mo is the rest mass of
the ions. In the following analysis, quantities with the
subscript 0 are used to represent those corresponding to
the reference particle. Note that, since the vertical motion
is decoupled under the approximation adopted here, we
have neglected the vertical variables. To accomplish
effective three-dimensional cooling, we will finally need
some coupling between horizontal and vertical motion
and, as is well known, this simply requires employing,
for example, a skew quadrupole or a solenoid.

Applying several canonical transformations [8] and

scalings to Eq. (4), we eventually find, changing the inde-

pendent variable to 8 = s/R (R = average ring radius),

2-2
p~ vox

Hi = —+
2 2

27K vL
—2

+ sin(11 + pb)b„(8 —8b)

2m'hb I . h
x sin —P + P, ~B~(8 —8,),

C b

where 8b = sb/R, 8, = s, /R, gp = u —1/yp where u is
the momentum compaction factor, and pb and rp, are the
so-called synchronous phase at the bunching and coupling
cavity whose harmonic numbers are, respectively, hb and

h, . The coupling constant I, has been introduced as

qV, R

2Pocpo a
'

and we have simply assumed that the storage ring studied

here has been designed such that the dispersion g, and

di1/ds, vanish at the rf cavity positions. In addition, the

betatron motion has been smoothed out introducing the
transverse tune vz, while vL is a constant which roughly
corresponds to the longitudinal tune vL, and is given by
the relation cos(2n. vL) = 1 —2m. vL.

The ions susceptible to laser cooling are heavy particles
for which the synchrotron radiation loss is negligible and,
therefore, it is unnecessary to accelerate to compensate for

energy loss. However, we need the ordinary rf cavity as

a bunching cavity. The energy of stored heavy-ion beams
is, in general, below transition, i.e., gp ( 0, and itib must
then be positive in the definition introduced here. Then,
to have the maximum bunching effect, we choose the
synchronous phase pb = vr/2 S.imilarly, p, is chosen
to be zero, so that the coupling effect becomes maximum.
Under these simplifications, Eq. (5) can be rewritten as

2 —2 2

H = —(p, + vrx ) — — Bp(8 —8b)
&o& 7rv~f

—2n. r,xPBp(8 —8,),
where the higher order terms in x and P have been ne-

glected, and the tilde has been dropped. This Hamiltonian
leads to the equations of motion

d x + vrx = 27rr, /BE(8 —8, ),

Im(v) = .

(2~)' g, r,'
ln 1+ ' coth4' 2vr 2 )

(2~)' g, r,'+ ln 1+ ' coth
4m. 4m 2vr k 2

(9)

The first line in Eq. (9) is the transverse damping rate, and

the second line is the longitudinal damping rate. When

the coupling is zero (I, = 0) there is only longitudinal

damping (at the rate Ao/4n. ), but for nonzero I, the two

rates come together. In the large I, region, the values

of Im(v) are saturated at the level Ao/Sm, which is just
1/2 of the longitudinal damping rate without coupling.

d 'P„,+ 2~v', ya, (8 —8,) = -2~g, r,xa„(8 —8,).
(8)

These linear equations can be solved by employing matrix
methods. Before doing that, we add a term which
replicates the laser cooling; namely a term on the left-hand
side of the r/I equation of Eq. (8), which is A(di/I/d8) over
the laser cooling section.

The 4 X 4 matrix equations can be solved numerically
but, with a few further assumptions, it is straightforward
to obtain an analytic result which gives us good insight
into the beam behavior. We put the coupling cavity
and the bunching cavity at the same azimuthal position
and, at the opposite side of the storage ring, we also
put the laser cooling section for which we take thin lens
approximation with A~ = ADO where 58 is the extent of
the section. Further, we assume that we are exactly on

a coupling resonance; i.e., v~ —vL = integer, because
the transverse damping rate due to the coupling is most
enhanced under this situation. Writing the eigenvalues
of the one-turn matrix as e' "' and applying perturbation

analysis to the dispersion relation derived from the one-
turn matrix, we obtain for the imaginary part of v in the

small I, region:
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Of note is the fact that Im(i ) remains positive in both
transverse and Iongitmdinal mades unless the coupling
strength is too big. Therefore, we can ahvays, more or
less, realize damping I the both directmas. To get the
most effective three-dimensional damping, it is preferable
to make the Im(i ) values of both modes approxiniately
equal to each other so that we can have the same damping
rate AD/8~ in both directions. As briefly mentioned
above, and also seen from Figs. I and 2, this situation can
be realized by driving the parameters oato a difference
resonance. In this case, a)I we need to do is to design
the value of I, larger than that at which the damping
rate in the two modes comes to the saturation IeveI. The
required minimum vaIue of I, can be evaIuated from
Eq. (9), leading to
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.23, &i.w.23l 29. ~LW.29]

and, for AD ~ I (weak damping rate), Eq. (10) is
approximated as

I I I l I.

0 2 4 6 8 10x10
Couphag constant r c

I R I I I I

0 2 4 6 8 10x10
Couphng constant rc

irlp= 4~3lz
I g )

Figure 3 shows the results of tracking; i.e., actually
solving Eq. (8) with the laser d'amping tenn. In these
cases, we have I, = 9.0IS. It can be observed, from
this figure, how close we must be to the coupling
resonance. We see that even an error of her, = ~0.01S
looks acceptaMe. The acceptable amount of the tune
error can be somewhat increased by raising the voltage of

FIG. 1. Imaginary part of the eigenvalues describing longi-
tudinal and transverse motion as a function of the coupling
strength between the modes. The bunching and couphng cavi-
ties are next to each other and 180' from the laser cooling
section. The Iongitudinal and transverse tunes are varied in
the four figures, keeping the resonance cmMhtion satisfied. The
damping rate was held fixed such that Ao/2n = 0.01. The
sobd curves are obtained from solviug the 4 X 4 determinant
while the dotted curves come from Eq. (9). One can see that
the agreement is quite good.

TABLE I. Parameters for ASTRID and coupling cavity examples.

ASTRID main parameters

Stored beam of ions
Total energy of stored ions

Ring circumference
Tunes
Momentum compaction
Transition energy y

~Li, ~Mg, etc.
100 [keV] —7 [MeV] for ~Mg
100 [keV] —13 [MeV] for 7Li+

40 [m)
2.29 (hor. ), 2.73 (vert. )

0.053
4.58

Stored ions
Bunching cavity

Frequency
Voltage amplitude

Coupling cavity
Frequency
Voltage amplitude
Cavity type

Example of the cavity parameters for 30 cooking

13 MeV 7Li

400.2 [MHz]
12.8 fkV]

400 2 [MHz]
-50 [kv]'

Pill box type excited with Tm»0 mode

100 keV ~Mg

580.7 [kHz]
3.2 [kV]

580.7 [kHz]
less than -1 [kV]~

Lumped circuit type

'This voltage corresponds to I, = 0.015.
bThis value would strongly depend on the cavity design.
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FIG. 2.G. 2. The same as Fig. 1, but now the position of the
unching and damping cavities are varied fixing the tunes as

vT = 2.29 and v& = 0.29. The laser cooling is at 8 = 0'.

the coupling cavity; i.e., employing a larger I, . Finally,
in Table I, we present the parameters of the ASTRID
ring and examples of the bunching and coupling cavity
parameters that would allow three-dimensional cooling.
After the cooling is accomplished, one might, for various
reasons such as obtaining a crystalline beam, turn off the
coupling and the bunching cavities.

For some purposes, it may be desirable to employ
specially designed cavities. For example, if the stored ions
have very low energy, the circulation frequency will also
be very low. Hence, the desired frequency of a bunching
and a coupling cavity will be very low and a simple
rectangular structure will have large physical dimensions.
In such a case, an extremely reentrant cavity with lumped
impedances supplied by a coil may be desirable.

In summary, we have shown that a coupling cavity in

a storage ring will allow the cooling of transverse degrees
of freedom although the cooling laser need only operate
on the longitudinal degree of freedom.

The authors would like to thank Dr. Jeffrey S. Hangst
and Dr. Jie %ei for helpful discussions and for
kindlin y providing the design parameters of the storage
ring ASTRID in Denmark and TSR in Heidelberg.
%"ork supported by the Director, Ofhce of Energy
Research, Office of High Energy and Nuclear Physics,

F . 3. Tracing results, i.e., solutions of E i8i h' 'h

particles are followed and, from them, transverse (solid
line) and longitudinal (dotted line) scaled rms emittances are
evaluated. The results are in accord with the eigenvalue
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effects, etc. The effective damping of both degrees of freedom
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