
VOLUME 72, NUMBER 25 PHYSICAL REVIEW LETTERS 20 JUNE 1994

Critical Behavior for Correlated Strongly Coupled Boson Systems in 1 + 1 Dimensions
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The natural integrable correlated strongly coupled boson system in 1 + 1 dimensions is the q-boson
hopping model; we calculate its critical exponent 8 and determine its correlation functions. For small
couplings the q-boson model has natural connections with the Bose gas and the XY models of very
large spin for which 6I's and correlators are reported. For large couplings the hopping model is a new
phase of interacting bosons substantially different from the impenetrable Bose gas.
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should be finite for n, = 0 and unity for weak enough
coupling.

Obvious possible choices for Pj are now Pj =
([NJ]/NJ) with a E R and [NJ] —= (1 —

q ~2~)/

(1 —
q ); q = er, y ) 0; then y will prove to be the

coupling constant of the theory. However, for integra-
1

bility when d = 1 we find we must use n = 2. With
this choice the kinetic energy of the natural correlated
boson model is Hk;„= g& J k~ P, bj bt, Pk + H.c., and if
we degne

t
NJ = b~ b). , (2)B =(B) =bJP,

we find the closed algebra

[B,B ]=q '8 [NJ, Bk] = BJ B,k and H.c.

(3)

The algebra (3) for correlated bosons is a "q-boson al-
gebra" [8, 9]. Indeed for zero coupling y = 0 (q = 1)
the representation which is (2) of the algebra (3) be-
comes a representation of the Heisenberg algebra for
ordinary canonical bosons. Since QNJ commutes with
our proposal Hq;„ for bosons, we can consider [8] H =
Hk;, —(It, —1)QN, where p, is the chemical potential.
Then with d = 1, the integrable form of H we can go on
to consider in this Letter is

H = ——g(BJp(BJ. + B,~)BJ —2NJ) —p, gN,
j=1 j=1

(4)

under periodic boundary conditions j + M = j. But this
Hamiltonian H is exactly the q-boson hopping model
recently introduced and solved in Ref. [8].

The model (4) was solved by reference to a more fun-
damental "q-boson lattice model" considered in Ref. [9]
and solved there by the quantum inverse method (or al-
gebraic BA). But we now have a direct solution by al-
gebraic BA [10], and the model appears to fill a natural
place within the general theory of the d —= 1 integrable

The discovery of high-T, superconductivity has stimu-
lated studies, e.g., Refs. [1—4], of electron lattice models
whose kinetic energies involve electron correlation, i.e.,
the hopping terms between adjacent sites depend on the
occupation of those sites. Typically, as in, e.g., Refs. [1—
3], they have involved hopping terms taken in the form

Hq;„= g g PJ cj ct, Pk + H.c. (1)t

(j k) &=+1

The c, , ck (for fermions) are anticommuting spin-2
operators, (c, ck ~) = BJ k8 I, PJ = (1 —n, ) with

nj —= cj cj, and these prevent two electrons from
appearing on the same site. In this Letter we report
the construction of certain comparable strongly coupled
correlated boson models.

In Ref. [3] the strongly coupled fermion models are
extended so as to combine in the one model both the
Hubbard and the t-J models: Typically, each of these
different models exhibits superconductivity induced by
purely electron-electron interactions. A feature of the
Hubbard model [5],of the supersymmetric t Jmodels [3-],
their extensions [3], and indeed the model of Ref. [4] is
that in one dimension (1D models), they are completely
integrable, solved by the Bethe ansatz (BA).

These high-T, studies have also led to the investigation
of various strongly coupled boson models; but, e.g., for
the strongly interacting d = 1 boson systems studied in
Ref. [6] in analogy with the fermion Hubbard models,
these models are not solvable by the BA method [7]—
essentially because of the many particles possible on a
lattice site in these boson cases. However, the natural
d = 1 boson models analogous to the correlated fermion
models are not the strongly coupled boson models of
Refs. [6,7]. Instead they are the q boson models, like-
the "q-boson hopping model" and its equivalents, reported
and solved very recently [8].

To see this observe that, for (spinless) boson operators
b, , b, on sites J, [bj, bk] = Bjk with NJ = b, b, and.
a boson projector Pj should eliminate boson hoppings
to and from fully occupied sites j—so it should have
value zero for the boson occupation number nj. ~ ~. It
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systems [9, 11, 12]. The continuum limit of the Hamil-
tonian (4) is [8] the Bose gas, solved at zero temperature
T = 0 [13] and at T & 0 [14] exactly. The Bose gas has
the well-known pairwise repulsive 6-function interaction
of strength c, and c is the coupling constant. Attempts
to introduce repulsive 6-function interactions on a lattice
site lead to problems from the many particles possible on
these lattice sites; but these problems are now avoided
in (4) through the correlation terms described by the P, .
Moreover, the collapse of the many bosons possible on a

single site does not occur because the quantum integrabil-
ity means that fermion like -quasiparticles, obeying Fermi
statistics, are the collective excitations induced in the mo-
mentum space. Furthermore the exact solvability means

that methods of conformal field theory [12, 15, 16] can be
used to calculate exactly the critical exponent 0 which de-
termines the long-distance asymptotics of the correlation
functions. We shall report in this Letter in some com-
pleteness these asymptotic expressions for the correlation
functions of the q-boson hopping model (4) and shall re-

late these to the correlation functions of the more familiar
XY model.

In the continuum limit in which j6 =- &- with 6 0. if
B, = K&b(x), N, = BN(x), one finds for all finite y ~ 0
that [b(x), bt(y)] = 6(x —y) and N(x) = bt(r)b(x) and

the corresponding limit of (4) is the Bose gas with c =
2y. By expanding the q-boson model (4) itself in powers
of y, we find that, for yN, (& 1.

M .M

H —— (bt+1b~ + bt+)b~ — , y[b—,+)b, NJ + Nj+)b, +)b, + b, +)(Ni ) + N~)b~] — N, + O(y )) —p, gN;.2

j=1 j=-- ]

At y = 0, the free boson limit, (4) becomes the linear
hopping model of ordinary bosons. Moreover (5) shows
that all orders of nonlinearity in terms of ordinary bosons
are contained in (4), that y is indeed the effective coupling
constant for this strongly coupled system of ordinary
bosons, and that, through the presence of the N, , these
bosons are strongly correlated.

The y ~ 0 limit of (4) is a lattice form of the free
boson limit, c 0, of the Bose gas. On the other
hand c ~ (x and y ~ ~ are distinct phases of inter-

acting boson systems: c ~ is the "impenetrable"
Bose gas [13], but for y = ~ (4) is evidently

H = —
p ZJ=)(4, +i4g + 4 1+iI'J —2') —p &J=i Ng

expressed in terms of the "ladder" operators P, , @, , and

N, : [N, , )j;] = $,6;, , and H—.c., but [P, , @; ] = 7r, 6;,
the vacuum projector, m; =~0), (0~, .

We shall now establish the connection between the
q-boson model (4) and the XI' model of spin S. In a

magnetic field h, the XY model has quantum Hamiltonian

Hxr = ——g(S +,S, + S,~, S,+) —h g S;. (6)

and the S, , S~ satisfy the su(2) Lie algebra. By Holstein-
Primakov transformation SJ = (S+)t = bj $2S —N, ,

S,' = S —N, = S —b, b, , Hxr has the well-known 1/S
expansion which, however, is identical, to order y, with

the expansion of H Eq. (5): y =— 1/2S and p, is identified
as p, = I —h. We can thus conclude that the large 5
limit of the X)' model is the q-boson hopping model (4)
in the limit of small y, as given by Hamiltonian (5).

To determine the actual asymptotics of the correlation
functions for the q-boson hopping model (5) we first

need results for the thermodynamics of the model. %'e

give some of these next. The N-particle energy E~:
is found by direct application of the algebraic BA to
be [10] Fz = g, , (2sin (p, /2) —p, ) and agrees with

Ref. 8. The p, are the roots of the Bethe equations
e '« = P. ) .~, e' '» "" with the two-body phase
shifts C)(p) = 2 tan '(coth(y) tan(p/2)). When y = ~
these Bethe equations have exactly determinable, purely
algebraic, solutions [8].

The thermodynamics of the hopping model (4) is
handled in the usual way [14]. The ground state en-

ergy of the model at finite temperatures T = p ' is

determined through the quasiparticle excitation ener-

gies e(p) above that ground state energy satisfying the

nonlinear integral equations e(p) = 2sin (p/2) —p, —

(2trp) I K(p —t) ln(1 + e P't')) dt, 27rp(p)(1+
et"P') = 1 + j K(p —t) p(t) dt, where 0 ~ p, ~ 1,
and K(p) = B4&(p)/Bp = (sinh2y)/(cosh2y —cosp).
The function p(p) is a quasiparticle density,
and the pressure T of the system is equal to
7 = (2mp) f ln(1 + e P'~') dt while the den-

sity 'D = f p(p)dp = BP/)))p, . At zero temperature
T = 0 these integral equations become linear:

e))(p) = 2sin (p/2)

K(p —t)ep(t) dt,

2oopo)p) = ) + J )'O(p o)po(o)do,

and eo(~A) = 0, —7r ~ A ~ m. . The density po(p) is

now connected with the observable momenta of the
A

quasiparticles k(p), for k(p) = p + f A 4(p, t)po(t) dt,
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and 2mpo(p) = Bk(p)/Bp . The pressure P and the
density D now become

9() = —(27r) '
J! Eo(p)dp & 0,

(9)
270 = J~ pp(p) dp = kF/17,

where kF = k(A) is the Fermi momentum. The low
temperature expansion of the pressure is then 9 = Pq-
(n. /6vF)T + O(T ) where vF is the Fermi velocity:
, = [a~, (p)/ak(p)], = &,'(A)/2m'p (A).
To obtain the critical exponents which determine the

long-distance asymptotics of the correlation functions
within the scaling limit we use the predictions from
conformal field theory (CVt') [12,15, 16]. The integral
equation (7) means that at T = 0 the dispersion curve
is linear near the Fermi surface kF.' E(k) = (k —kF) vF
and this means the CV1 is applicable. From our result
for P as T ~ 0 quoted below (9) and Ref. [16] we can
conclude that the central charge c = 1. In this case,
the physical fields W„(t) can be expressed in the scaling
limit as sums of the conformal fields and their critical
exponents 8 in terms of pairs of conformal dimensions
5- of the conformal fields, and these exhibit a continuous
dependence on the parameters of the model [12, 15].
We shall here follow the outline given in Ref. [12].
The generic asymptotic formula for the zero temperature
unequal time correlation function of the physical lattice
field W„(t) is

(0„(r)q i(0)) =

QC(Q)e '" ' (n —ivFt) (n + ivFt)
0

where the Q are sets of quantum numbers, Q =
(AN, d, N ), all intege-rs, labeling [12] a complete set
of states and thereby labeling the conformal fields in

the expansion of the physical ones, and the C (Q),
here left undetermined, are the coefficients in that

expansion. The 8 determine the conformal dimen-
sions 5- by 2LL- = 2N +-(28) (hN ~ 8d) . The
critical exponent 8 is dined through 8 = 2Z2(A)
where Z(p) is the solution of the integral equation

Z(p) —(2n.) I A K(p —t)Z(t) dt = 1 and K(p), for
the q-boson hopping model, is the kernel in Eqs. (7)
and (8). We also use the alternative expression

8 = (d/dA) I &Z(t) dt for 8. The V„(t) ultimately
dictate [12] the choice of the Q in (10). From (8) it
follows immediately that Z(p) = 2n po(p) and from

8 = (d/dA) f A Z(t) dt we get the expression

8 p8=2m
BA

from which we evaluate all of the 8's reported in this
Letter.

To obtain the leading terms of the temperature de-
pendent correlation functions at very small tempera-
tures T & 0 we use the standard mapping (n —ivFt) ~
(vF/m T) sinh(n. T(n + i vF t)/vF] in (10). At equal times,
t = 0, for simplicity, (10) then becomes

(e'.(r)q i(0))r =

y C(Q)e 2'«Fd (27$ T/ v)F+2+ ~ e "~~ (12)
Q

and the correlation length P is given by
(27rT/v )(b, + + b, ).

For our present purposes the leading terms in the
asymptotics of the zero temperature unequal time
correlator (B„(t)Bi(0)) for the q-boson field (we aret

using Heisenberg representation) correspond to the small-
est conformal dimensions 5- in (10) and these have [12]
hN = 1, d = 0, +1, and N =0, 1. Con-sequently,

(B„(t)Bi(0))—(w)
' (Ci + C2(w + w ) + C3 [w) cos(2mn270)(ww ' + ww ')]

in which w = n —ivFt, and the C s are constants. Likewise from (12) at T & 0 and equal times, (B„Bi)r-
Ci(2m T/vF)" e r"'"'a + . with the correlation length gy = vF8/m T.

The leading terms of the asymptotics of the unequal times density-density correlator at T = 0 are determined by 6-
with [12] LION = 0, d = 0, ~1, and N =0, 1. Thus f-rom (10)

((N„(t)Ni(0))) —= (N„(t)Ni(0)) —2' —Bi(w + w ) + B2 [w~ cos(2mn270), (14)

while from (12) at T & 0, ((N„Ni))r —B (2'.T/
vF)2e 2 r"'"' + . . with gd = vF/2mT. These results
can be confirrned by calculations based on an exact
solution [17].

All of these results for central charge c = 1 apply
equally to continuum models (the Bose gas) and the lattice
models [model (4)]. The transitions from algebraic decay
of the correlation functions at T = 0 to exponential decay
at T ) 0 and the infinite correlation lengths as T ~ 0

show the expected "superfluid phase transition" at T = 0
for these models. Results are then distinguished by the
forms of the critical exponents 8 as given by Eq. (11).
For the q-boson hopping model (4) we can find the exact
expressions for 0 as y ~ and in the free boson limit

y ~ 0. When y ~ co, the kernel K(p), in Eqs. (7) and

(8), ~ 1, and so the density is 2' = A/(n. —A) and the
Fermi velocity is vF = (1 + Z)o)

'
sin[m Do/(1 + Do)].

Thus from (11) 8 = 2(1 + 17O) . On the other hand for
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the free fermion limit c ~ of the Bose gas 8 = 2 [12],
and y ~ ~ is indeed a new phase of the interacting boson
system. Moreover in the classical limit [8], when y ~ ~,
2' ~, 8 ~, gI =2/T, andgd 0.

In the free boson limit y ~ 0 the situation is sub-

stantially more complicated. The Bethe equations reduce
to singular integral equations from which it is possible
to extract 2' = A2/87 and vF = 2/27 23O. These re-
sults agree with those found for the continuum Bose gas
with c ~ 2y and c 0. The critical exponent 8 for the

tI-boson model is then, from (11),e = 27rg17O/27 so that
= 4L)p/T. Then both these results apply to the Bose

gas with c = 2y, and these are new results for the Bose
gas (compare Ref. [18]).

For the XY model as S ~ we may argue that its crit-
ical theory is the q-boson hopping model theory as y 0
because of the identity to order 7 of the expansions (5),
and that from (6), with y ~ 1/2S. With the correspon-
dence Do ~ S(1 —tr) where 0 s o. ~ 1 is the scaled
magnetization, obtained through the Holstein-Primakov
transformation, we must then have the correlators (13)
and (14), as well as those for T ) 0, now all expressed
in terms of the S, , S,', with

8xy = 2mSv 1 —tr, gf = 4S(1 —o.)/T, (15)
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