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Electron Correlations, Magnetism, and Structure of Small Clusters
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Many-body properties of N-atom clusters having N & 8 are calculated exactly in the framework
of the Hubbard model for all possible nonequivalent cluster structures. The most stable structure
and the corresponding total spin S are obtained rigorously as a function of the Coulomb-interaction
strength U/t and the number of electrons. Results for the stability of cluster ferromagnetism against
electronic excitations and structural changes are obtained for the first time. The resulting interplay
between electron correlations, magnetism, and cluster structure is determined.

PACS numbers: 75.10.Lp, 36.40.+d, 75.60.Jp

Magnetism is one of the most interesting and challeng-

ing problems in cluster physics. The major part of the
experimental and theoretical work in this field has been
dedicated to the study of 3d transition metals (TM) due
to their central importance in both basic and applied sci-
ence [1—4]. From a fundamental point of view, these clus-
ters offer a unique opportunity to study how the magnetic
properties change as the localized electrons of an isolated
atom start to delocalize throughout several atoms, and
how the itinerant magnetism characteristic of the solid
state develops with increasing cluster size. Moreover, the
magnetic behavior of itinerant 3d electrons is known to
be very sensitive to the lattice structure and to the local
environment of the atoms [3—7]. The determination of the
relation between cluster structure and magnetism, and of
the stability of cluster ferromagnetism against structural
changes as well as electronic excitations, is therefore cru-
cial for the progress in this field.

The theoretical understanding of cluster magnetism is
hindered by two main difficulties: an accurate treatment
of electron correlations, which are fundamental for mag-
netism, and a thorough optimization of the cluster ge
ometry, on which the magnetic properties of itinerant
electrons are known to depend strongly. Since these
two problems are formidable and their combination even
more so, it is natural that the studies performed so far
have attempted to deal with one of them at a time [3—8].
It is the goal of this Letter to present the first complete
many-body study of magnetism and cluster structure,
where these two important aspects are treated rigorously
and on the same electronic level.

In order to achieve rigorous theoretical results on such
a complex problem, one is forced to consider a model
which is simple enough to allow an exact or at least very
accurate solution, and which at the same time contains
enough complexity to be able to shed light on the physics
of real systems (e.g. , 3d TM). Such a model is given by
the Hubbard Hamiltonian [9]:

II= t ) ct c~ —+ U ) n,Tn;i.
(~2) iy' 'a

In spite of its simplicity, this Hamiltonian has played,

together with related models, a major role in guiding
our understanding of the many-body properties of met-

als and particularly of magnetism in both three- and low-

dimensional systems. It is our aim to use it now to de-

termine the magnetic and structural properties of small

clusters and their interplay. The underlying electron cor-
relation problem is solved exactly within a full many-

body scheme, and a complete geometry optimization is

performed by considering all possible nonequivalent clus-

ter structures. In this way, definitive conclusions about
the behavior of clusters within the Hubbard model are
achieved for the first time.

In order to solve the problem of geometry optimization
completely, it should first be noted that in the Hubbard
model only the topological aspect of the structure is rel-

evant for the electronic properties or, in other words,

defining the cluster structure is equivalent to defining for

each atom i those atoms j which are connected to i by
the hopping element t. The set of all possible nonequiv-

alent cluster structures is, therefore, a subset of the set
of graphs with N vertices [8]. We generate all possi-
ble graphs by considering the adjacency matrix A which

characterizes a graPh: A,s = 1 if i and j are near-

est neighbors (NN), and A;s ——0 otherwise. A set of
nonequivalent A's is obtained by means of a simple bit-
operation computer algorithm [10]. However, notice that
for the study of clusters, we must consider only those
graphs which can be represented as a three-dimensional
structure. For that reason, a graph is accepted as a possi-
ble cluster structure, if a set of atomic coordinates exists,
such that the interatomic distances R;s satisfy the con-
ditions R;~ = Ro if A;~ = 1 (i.e., NN), and +~ ) Ro
otherwise, where Ro refers to the NN distance [11].

The optimal cluster structure is determined as a func-

tion of U/t and of the number of electrons v by compar-

ing the ground-state energies of all possible nonequivalent
structures [12]. These energies are calculated by means
of Lanczos' iterative method [13]. In this full many-

body scheme, the correlated ground-state energy E is ob-
tained exactly within a controlled accuracy e (in our case

10 I) [14]. The convergence of E is monitored as a
function of the number of iterations M and the sequence
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FIG. 1. Phase diagram of Hubbard clusters having N = 5
atomic sites. The ground-state structures obtained for a
Coulomb repulsion U, hopping integral t, and number of elec-
trons v are illustrated. The ground-state spin S is minimal
(i.e., S = 0 or S = 1/2) unless indicated. For v = 4, S = 1 for
U/t & 29.9, and for v = 6, S = 2 for U/t & 10.8. No further
structural changes are found for 0 & U/t & 3 and U/t & 6.

is interrupted once iE(M) —E(M —m)[/iE(M)i & s
(m 5). Comparison with previous work [5—8] and with
direct numerical diagonalizations shows that s is not un-
derestimated. The error s is taken into account when
comparing the energies of the different cluster structures
(e.g. , two structures are considered to be degenerate if
their energy difference is less than the sum of the es-
timated errors). Therefore, our results for the most
stable geometries are rigorous, although strictly speak-
ing the energies cannot be calculated exactly. Once the
ground-state structure has been identified, we calculate
the ground-state eigenvector from which the observables
like the total spin S are accurately derived. Using an ap-
propriate projector several excited-state energies for dif-
ferent S are also obtained, which give direct information
about the stability of magnetism.

The results for the most stable structure and total spin
S as a function of the Coulomb interaction strength U/t
and number of electrons v are summarized in the form
of "phase" or structural diagrams as the ones shown in
Figs. 1—3 [15]. The main conclusions and trends derived
from our calculations for N & 8 are discussed below [10].

For low electron or hole concentration (i.e., v/N & 0.4—
0.6 and 2 —v/N & 0.3—0.6) the optimal cluster structure
is independent of U/t, i.e. , the structure which yields
the minimal kinetic energy (uncorrelated limit) remains
the most stable one, irrespective of the strength of the
Coulomb interactions. Furthermore, no magnetic transi-
tions are observed: the ground state is always a singlet
or a doublet (see Figs. 1—3). This indicates that, for
low carrier concentration, the Coulomb interactions are
very efficiently suppressed by the correlations, so that
the magnetic and geometric structure of the clusters are
dominated by the kinetic term. This physically plausible
conclusion is further supported by analytical results for
the case of two carriers [10]. Nonetheless, the fact that
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diagram of Hubbard clusters having N = 7
Results for U/t & 10 are given in Fig. 3.

FIG. 2. Phase
sites as in Fig. 1.

this holds for finite values of v/N and U/t -+ +oo seems
not obvious a priori.

For small v we obtain compact structures having max-
imal average coordination number z (t & 0). These are
all substructures of the icosahedron and have the largest
possible number of triangular loops. In contrast, for large
v (small vh = 2N —v) open ground-state structures are
found. In particular for vp, = 2 we obtain bipartite struc-
tures, which have the largest possible number of square
loops. This can be qualitatively understood in terms of
the single-particle spectrum. In the first case (small v)
the largest stability is obtained for the largest bandwidth
for bonding (negative-energy) states (sg & —zt), while in
the second case (small vt, ) it is obtained for the largest
bandwidth for antibonding (positive-energy) states, i.e. ,
for the most compact bipartite structure.

A much more interesting interplay between electronic
correlations, magnetism, and cluster structure is ob-
served around half-band filling (i.e., iv/N —1[ & 0.2—
0.4). Here, several structural transitions are found as a
function of U/t (see Figs. 1—3). Starting from the ground-

S=1

S=2

S=1

2 3 4 5 6 7 8 9 10 11 12
V

FIG. 3. Phase diagram of Hubbard clusters having N = 7
atomic sites and large values of U/t. As in the previous fig-
ures, the ground-state spin S is indicated only if S ) 1.
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state structures for U = 0 [8], one typically observes that
as U is increased, first one or more of the weakest cluster
bonds are broken. This change to more open structures
occurs for U/t 1—4 and is most often seen for v & N,
since in this case the U = 0 structures are more com-

pact, while for v ) N the structures are rather open
already for U ~ 0 (see Figs. 1 and 2). As U is further
increased (U/t & 5—6) it is energetically more advanta-
geous to create additional new bonds. Higher coordina-
tion gives the strongly correlated electrons more possi-
bilities for performing a mutually avoiding motion, and
this tends to lower the kinetic energy. Moreover, these
compact structures are more symmetric. Therefore, the
electron-density distribution is more uniform, which also
contributes to lower the Coulomb-repulsion energy.

It is interesting to compare our results for v = N, N +1
with first principles calculations for simple-metal clusters
[16]. Previous Hiickel calculations [8] have already shown
that the optimal structures for U = 0 and v = N are in
good agreement with ab initio results for neutral clusters
(N & 9). Including the Coulomb interactions we now
show that for v = N these structures remain stable up to
U/t = 4—8, i.e., far beyond the weakly correlated limit.
This explains the success of the U = 0 calculations in
applications to these real systems, which are of course
correlated, though not very strongly. For cations (v =
N —1) the situation is similar except for N = 5 and
N = 6 where the results for U & 0 agree with the ab initio
calculations, while the results for U -+ 0 disagree with
them. This suggests that in these cases the correlation
eEects play an important role in determining the relative
stabilities [17]. Our results for v = N+ 1 and N & 6
disagree with the ab initio structures reported in Ref. [16]
for Liiv . This could be an indication of the breakdown
of the single-band tight-binding approximation for states
close to the continuum [10,18].

The structural changes at larger U are often accompa-
nied by strong changes in the magnetic behavior. One
may indeed say—as already pointed out by Callaway et
aL [7]—that these structural changes are driven by mag-
netism. For half-band filling (v = N) the optimal struc-
tures show minimal total spin S and strong antiferromag-
netic correlations. None of the structures having a (un-
saturated) ferromagnetic ground state [19] (e.g. , "stars")
were found to be the most stable ones for any value of
U/t The optimal . antiferromagnetic structures are non-
bipartite (see Figs. 1 and 3). For instance, the rhombus is
more stable than the square for N = v = 4. The bonds,
which are "frustrated" in a static picture of antiferro-
magnetism, yield an appreciable energy lowering when
quantum fluctuations are taken into account. Therefore,
Hubbard clusters with one electron per site and large U/t
can be best seen as frustrated quantum antiferromagnets.

For all studied cluster sizes (N & 8), the most stable
structures for v = N + 1 show ferromagnetism for large
U (typically U/t & 4—14). This is in agreement with
Nagaoka's theorem [20]. For the smaller clusters, i.e.,

N = 3, 4, and 6, this is the only case where the optimal
structures are ferromagnetic. For N = 5 unsaturated fer-

romagnetism (S = 1) is also found for v = 4, though at
large values of U (U/t & 30). However, for larger clus-

ters, ferromagnetism extends more and more throughout
the U/t v/N-phase diagram. Indeed, for N = 7 ferro-

magnetism is found for v = 4, 6, 8, and 10 (see Fig. 3).
Clusters with N = 8 can be ferromagnetic for v = 9—12.
The tendency towards ferromagnetism is much stronger
for more than half-band filling than for v & N. This
is qualitatively in agreement with experiments on 3d TM
clusters. In fact one observes that the magnetic moments
per atom p in V and Cr clusters are very small if not zero

[p & (0.6-0.8)p~] [21], while Fe and Co clusters show

large magnetizations [1,2,22]. Finally, let us remark that
the appearance of ferromagnetism is much less frequent
than what one would expect from mean-field Hartree-
Fock arguments (Stoner criterion). This reveals, once
more, the importance of correlations in low-dimensional
systems [5—7). However, the model of Hubbard clusters
exaggerates the effects of quantum fluctuations being one
of the most extremely low-dimensional systems one can
consider. Improvements on the model, by including ei-
ther several bands or nonlocal interactions, would tend
to weaken such strong fluctuation effects.

As important as identifying the existence of ground-
state ferromagnetism in small clusters (S & 1) is deter-
mining the stability of the ferromagnetic state at T & 0
and characterizing the microscopic mechanisms respon-
sible for the temperature dependence of S. For this pur-
pose we have computed the excitation energy AE from
a ferromagnetic ground state to the lowest lying non-

ferromagnetic state (i.e., S = 0 or 1/2). The energy
6E = E(S = 0, 1/2) —E(S & 1) gives a measure of the
temperature T, b,E/k~ at which the ferromagnetic
correlations are strongly reduced by thermal excitations.
Notice that the excitations b,E can be of mainly two
different kinds. One can perform a purely electronic ex-

citation b,E,i, where the cluster structure remains fixed
to the optimal structure at T = 0. Or one can perform
a purely structural change b,E,t, where the electrons re-
main in the ground state and the structure is changed un-
til the ground state corresponding to this new structure
shows no ferromagnetism. In Fig. 4 the exact calculated
AEei and EE,t, are shown for v = N + 1, U/t = 64, and
N & 8. As already discussed, in these cases the optimal
structures at T = 0 are very compact and show saturated
ferromagnetism [i.e., S = 1/2(N —1)]. The remarkable
new result is that LE,~ and LE,t have similar values, and
that b,E,t can even be smaller than b,E,i. This implies
that the structural changes are at least as important as
the electronic excitations for determining the tempera-
ture dependence of the magnetization of small clusters.
Experimentally, there might be indications that for Fe~
structural changes could be related to the drop of the
magnetization observed for increasing T [22]. From the
points of view of theory, it still remains to be proven
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FIG. 4. Size dependence of the spin excitation energy AE
from the ferromagnetic ground state (S ) 1) having the op-
timal cluster structure to the lowest lying nonferromagnetic
state (S = 0 or S = 1/2). The full line corresponds to a
purely electronic excitation and the broken line to a purely
structuraL change. The number of electrons is v = N + 1 and
the Coulomb-repulsion strength is U/t = 64.
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