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Interlayer Josephson Tunneling and Breakdown of Fermi Liquid Theory
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From the single assumption that the spectral density of the single particle excitations in high tempera-
ture superconductors obeys a scaling property characterized by a nonvanishing exponent a, an interlayer
tunneling Hamiltonian is obtained. A nonvanishing value of the exponent a implies breakdown of the
Fermi liquid theory at sufficiently low energies and low temperatures, consistent with experiments.
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Recently, we have explored a gap equation based on an

interlayer Josephson tunneling Hamiltonian of high tem-
perature superconductors and have found the results to be
satisfactory [1-3]. To many, however, this Hamiltonian
has appeared to be enigmatic, to say the least. In the
present paper, we wish to demonstrate that this Hamil-
tonian is a consequence of the non-Fermi liquid behavior
of the normal state; however, we are unable to provide a
rigorous proof. We characterize the non-Fermi liquid be-
havior by a spectral density of the single particle excita-
tions that satisfies a homogeneity relation with a nontrivi-
al exponent [4], at sufficiently low temperatures and low

energies. Although considerable progress is being made,
the derivation of this spectral density froin a realistic mi-

croscopic Hamiltonian remains an open problem. To be
more specific, we show the following: (1) For the as-
sumed non-Fermi liquid Green's function, and for a range
of a, the Josephson critical current I, is proportional to
6 /tu„where 5 is the gap and to, is the frequency scale of
the order of the in-plane bandwidth. This allows us to re-
formulate the Josephson effect in terms of an instantane-
ous Hamiltonian. In contrast, for a Fermi liquid, this is
not possible because I, is proportional to Id I. (2) The
same assumptions lead to incoherent single particle tun-
neling between the layers for a range of a. Thus, one can
formulate a simplified effective Hamiltonian in which sin-

gle particle tunneling between the layers is missing, but
pair tunneling is possible [1-3].

To set the stage, we revisit the Josephson effect. The
well known expression for the critical current for two con-
ventional superconductors with equal gaps [5],

trit(T)
h

A(T)

where Riv is the normal state tunneling resistance, is
unusual in two respects. As T 0, I, is a nonanalytic
function of the gap (cx: IhI), but is analytic close to T,
(~h ). It is also remarkable that I, is independent of
the cutoff, co~, the Debye energy. The dependence on the
Fermi energy is buried in the de6nition of R~. We claim
that this is a subtle manifestation of Fermi liquid theory.

&scs Gg(k, to)
(3)

Consider the expression for the critical current at T 0,
given by

I, ~& IT„,I', l~il lgl (2)
k,q
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where Fg Qe(k) + IhgI, hi, is the energy gap, and the
quasiparticle energy e(k) in the normal state is measured
from the chemical potential. The integration over the
momenta can be converted to energy integrations which
extend only to the Debye energy. If the energy integra-
tions can be extended to infinity with impunity, it can be
seen by scahng the energy variables that I, ~ IhI; the
correction is of order 5/ton. This result crucially hinges
on the following asymptotic property of the single particle
spectral function, A(k, ta) (k is measured from the Fermi
wave vector and to from the chemical potential):
A(Ak, Atu) A' 'A(k, to), where the exponent a is zero.
Note that the spectral function of a Fermi liquid, ignor-
ing the incoherent multiparticle excitations, Zb(to
—vFk), where vF is the Fermi velocity, clearly satisfies
the homogeneity relation with a 0. Any nonzero value
of the exponent a will result in a cutoff dependence of the
critical current I„and if this cutoff is much larger than
the gap, the critical current can be an analytic function of
the gap, proportional to h(h/toD). This will allow us to
reformulate the Josephson effect in terms of an instan-
taneous pair tunneling Hamiltonian on energy scales
smaller than the cutoff. [Note that, close to T„ the mag-
nitude of the Josephson effect, derived from Ginzburg-
Landau theory [6], is proportional to h(h/T) and the an-
alytic result is due to the thermal smearing. ]

We now calculate the critical current I, for an assumed
form of the non-Fermi liquid Green's function. Consider
first the Nambu matrix Green's function, G, with
Bardeen-Cooper-Schrieffer (BCS) theory [7], and exam-
ine the simplest possible generalization to include a non-
Fermi liquid spectral function, i.e., a&0. For BCS, we
can ~rite

'G,e(k, tv)
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Note that the oA'-diagonal terms are simply the Hartree-
Fock self-consistent pairing potentials, while the normal
state Green's functions are G, (k, co) ' =co —s(k) and

Gq(k, co) '=co+e(k). Here the energies are measured
from the chemical potential, and we are interested in low

energies where we can linearize and write co —
[. Fk instead

of co —s(k), etc. The analyticity properties must conform
to the general properties of the Lehmann representation.
The simplest possible generalization to include non-Fermi
liquid spectral function is

[co —s(k)]' 'co,'—
l

S [co+s(k) ] ' 'co,' (4)

Here, the cutoff co, is introduced to give the Green's func-

tions their proper dimensions. The self-consistent
Hartree-Fock potential must be calculated in the usual
manner [7]. This Green's function can be diagrammati-
cally motivated as follows. Consider, for example, the
element G, ~ ~

and write it as G, ~
~' = (G, ) ' —Z„—Z„

where Z„ is the normal part and 2, is the anomalous part
of the proper self-energy, such that Z„does not contain
Z, as an internal part. This approximate decomposition
is possible because even if we included Z, as an internal
part in Z„, Z„would not have changed appreciably; being
an internal block, the singularities of X,, would have been
integrated over. Besides, Z, is only expected to make a
change over a small range of energies of order
around the Fermi energy and its effect on Z„should be
proportional to lAi, l/co, «1. Similarly, Z, is assumed to
contain only internal hole line. Thus, we can immediately
write down Dyson's equations, G, =G, +G, X,„G, and

G, ~~ =G, +G,Z, G, i~. This adiabatic decoupling allows

us to use the essentially exact Green's function of the nor-

mal state, which in the present problem we have assumed
to be of the non-Fermi liquid form.

In addition to the branch points at +. s(k), the Green's
function has poles at co(k) =s(k) +exp[2zin/(I
—a)llhpl, where n are arbitrary integers, positive or
negative, and lhpl =lllgl(ldi, l/co, )'~ ' '. These poles
surround the point s(k) in the complex plane densely
and uniformly on a circle of radius lhPl for any nonzero
irrational a. For rational a, we have a discrete set of
poles. Because of the presence of the branch points at
~s(k), the Green's function is not single valued. We
make it single valued by defining the cut plane by
0 ~ 0 & 2z; then, the only physically relevant pole corre-
sponds to n =0, and the excitation spectrum is given by
co(k) =s(k) +lApl, as in BCS theory, with no imagi-
nary part, although the reactive nature of the coupling to
the non-Fermi liquid spectral function is manifest in Ag .
Note that the gap collapses as a 1 (cf. Balatsky [8]).

Using Eq. (4), the Josephson critical current can be
shown to be [9]

f(a, h/co, ) is a complicated function. We have, however.
been able to check the following limiting cases: (a)
f(O, A/co, ) =co,/A. for A/co, « 1; (b)

4'r(a)r(1 —2a) sinn(I —a) '

nI (1 —a)

ds
(2a,S),

for 2 & a& 4, d/co, «1, where &(2a,s) is the incom-
plete gamma function. As is clear from Eq. (6), the re-
sult can be analytically continued across a =

2 .

Thus, for a & 4, the dependence of f(a, A/co, )on A. /co,

disappears in the limit 5/co, « l. Although we have not
been able to evaluate f(a, A/co, ) for a & —,

'
in a useful

form, this is no longer true. %e suspect, ho~ever, that
for a not too small, the dependence on 6/co, is weak. The
diA'erence between the present result and the conventional
result is a striking manifestation of the cut spectrum of
the normal state. We emphasize that it is co, that sets the
scale, not 6 as in the conventional case.

%'e now obtain an instantaneous pairing Hamiltonian
that describes the Josephson eA'ect. This Hamiltonian is
certainly justified for a & —,', but should be approximately
true for a not too small as well, for reasons stated above.
Consider a Josephson pair tunneling Hamiltonian HJ for
two superconductors (I) and (2), given by

T 2

k, q c

and evaluate the ground state energy in first order pertur-
bation theory. The resulting critical current is essentially
the same as that obtained above. The same result can be
obtained in second order degenerate perturbation theory,
used to derive the conventional Josephson effect [7], pro-
vided we recognize that the weight is concentrated at
high frequencies due to the non-Fermi liquid behavior of
the normal state and the energy denominator can be re-

placed by the high frequency cutoff. Note that the wave

vector dependence of HJ is dictated by the wave vector
dependence of the single particle tunneling matrix ele-
ment. Thus, the mapping to HJ should be qualitatively
correct, and we believe that its magnitude will be approx-
imately correct with a proper definition of the electronic
scale co, . We emphasize, once again, that such a map-

ping is not possible for the conventional Josephson effect
with a Fermi liquid spectrum of the normal state because
I, cx: ld, l in that case. If we specialize to the situation
where the tunneling takes place between two layers, such

that the parallel momentum is conserved during single

particle tunneling and the electron operators do not de-

pend on the wave vector perpendicular to the layers, then

we can immediately write [10]
I.~ &IT~ql'&cF ~(h, /co, )f(a, a/co, ), (s)

where the angular brackets imply an energy average and c
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+ET'(c t 4 +Hc );
for each k, we have a two-state system. Imagine now
that a given k state is coupled to a bath of bosons; in our
case these are the Tomonaga-Luttinger bosons, presumed
to exist due to strong electronic correlations. In fact, the
very same electrons that are coupled to the bath of bosons
are also creating this bath, so the whole problem must
be solved self-consistently. Let us set aside the self-
consistency problem for the moment and ask what would

happen to the coherence of the single particle tunneling
due to the coupling to the bath. We show below, howev-

er, from an entirely different approach, that identical re-
sults can be obtained. Thus, we strongly suspect that, to
the level of sophistication considered here, self-consis-
tency is not an issue. We take the coupling to the bath to
be

H b- g g (c~ tc" —c ( tc ) )(at+a )
v, cd

(10)

In a non-Fermi liquid, the k dependence of the coupling
to the boson operators, a„, is likely to be unimportant.
Multiparticle excitations will be spread over such a great
range of energies, and hence momenta, that only an aver-

age coupling needs to be considered. This is now a two-
state system coupled to a heat bath and we can simply
take over the known results [12]. If the bath of oscilla-
tors is Ohmic, i.e.,

J(r0) =(n/2) g„g2b(c0 —co„)=a'ru, m 0,

and equal to 0 for m~ m„ then the salient features are
that for a'~ 1, tunneling is completely quenched at
T=O—orthogonality catastrophe —and, for 2

~ a'~ 1,
the relaxation between the two sets is incoherent. At
finite temperatures and, for a' & 1, or for a' ( 1 and
a'T~ Tk, the relaxation is an exponential, with a rate
proportional to T ' ', where TP=Tg(Tg/co, ) i '

For 0&a'& 2, T &a'Tk, the relaxation consists of
damped oscillation at short times, but incoherent power

Now the electron operators cg refer to the electrons of
the ith layer, of parallel wave vector k and spin a. Previ-
ous attempts [11] to derive this Hamiltonian by coupling
the single particle tunneling Hamiltonian to the spinon
pair field does not lead to a momentum conserving HJ, as
above, without further assumptions.

We now examine the conditions under which coherent
tunneling of single electrons is not possible. This does not
necessarily imply, however, that the single particle tun-
neling is irrelevant in the renormalization group sense,
but that the single particle dynamics is incoherent. A
similar effect is fairly well understood in the context of a
two-state system coupled to a dissipative heat bath (see
below). First, imagine a single particle Hamiltonian,
which is

H0=+a(k)c'1", c 1", +pa(k)c'(' c'J'

GLL
Tk

A diagrammatic derivation of this is identical to the su-

perconducting case discussed above, with one exception.
Now the role of the anomalous self-energy is played by
the self-energy that converts a cti1t electron to a c$1t
electron, i.e., proportional to the matrix element Tk,
therefore, the propagator in the anomalous block is a par-
ticle propagator and not a hole propagator as in the su-

perconducting case. From this Green's function one im-
mediately finds that, in addition to the branch point, it
has poles at

cop 8(k) +exp Tg(Tg/col )
1
—a

where n is an integer. As before, because of the presence
of the branch points, the Green's function is not single
valued. Thus, we consider the cut plane, 0~8&2m.
There is, however, a striking difference between the
present case and the previous superconducting case. In
this cut plane, there are two poles, corresponding to n =0
and n =1. The n =0 pole is the analytic continuation of
the larger eigenvalue e(k)+ Ti for a =0. As a increases
from 0, this pole undergoes a purely reactive shift and
marches down to c(k) as a 1. The pole corresponding
to n =1 is the analytic continuation of the smaller eigen-
value e(k) —Ti for a =0. As a increases, it immediately
acquires an imaginary part which is largest when a= 3

law at long times, the magnitude of which becomes quite
substantial as a' approaches 2 . For a' not too small, the
oscillations are hardly important for more than a cycle;
thus, the power-law relaxation is the dominant feature
even in this so-called coherent regime. The g factor of
the oscillation at short times is given by cot [(x/
2)a'/(I —a')], which tends to ~ as a' 0, but tends to 0
as a'

2 . The Ohmic oscillator bath is precisely what is
relevant for our discussion, because for both Fermi and
non-Fermi liquids there are excitations arbitrarily close to
the Fermi surface, but we need to relate the exponent a'
to a.

There is another way [13) to obtain the same result
which also serves to relate a' to a. The Green's function
GF corresponding to the Hamiltonian in Eq. (10) is

Gi (kro) ' Tt
6 —I

Tg G2 (k, a))

where Gi (k, ro) '=r0 —a(k) and similarly G2(k, ro)
ro —a(k). This gives rise to the usual result for the hy-

bridization and GF has poles at co a(k) ~ Tq. Once
again, pole prescriptions have to be added according to
the Lehmann representation. Now, consider, once again,
replacing Gi and G2 by the non-Fermi liquid Green's
functions of the individual layers. Thus, we obtain the
generalization Gii, which is

[ —(k)] '
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[at this point, on the Fermi surface, i.e., e(k) =0, the re-
laxation is totally incoherent]. The imaginary part now

decreases as a increases further, but both of the poles
come together and become degenerate at a =

2 . As a in-

creases, this pole escapes the principal Reimann sheet. If
we follow its path through all the Riemann sheets, it
spirals into z(k) at a =1. Thus, in contrast to the super-
conducting case where the pole does not acquire an imag-
inary part, the single particle tunneling is very differentl
affected by the coupling to the multiparticle excitations.
It is important to note that our treatment depends cru-
cially on the adiabatic principle; i.e., the time scale set by
T(k) is much larger than the typical time scale of the in-

plane processes set by the strong interactions between
electrons and is not expected to hold in the opposite limit.

If we identify tz' to be 2a/(a+ I), many of the results
obtained by this simple method are identical to those

given above. Note that in terms of the exponent a, the
pure incoherent relaxation begins for values greater than
or equal to —,', instead of 2 for a'. As emphasized above,
even in the so-called coherent regime, a & &, the power-

law relaxation dominates for a not too small and the sys-

tem is effectively incoherent.
In the present paper we have considered a model non-

Fermi liquid spectral function to test the effect of the
anomalous Green's function and have shown that an ap-
proximate instantaneous Josephson pair tunneling Hamil-
tonian can be obtained. This is certainly a simplification
in the sense that the instantaneous BCS reduced Hamil-
tonian is a simplification of the actual coupled electron-
phonon problem. However, as in BCS theory, an instan-

taneous Hamiltonian allows us to explore a number of
properties in a simple manner; the proper extension
awaits further work. The model is also simplified because
we have ignored the spin-charge separation. Preliminary
calculations of the normal tunneling problem with a
Green's function of the same form as in one dimension

[14] have been carried out [15],and the results have been

found to be equivalent to that without spin-charge sepa-

ration, but with a & 2 for any finite v, —v„where v, and

v, are the spin and the charge velocities. The supercon-
ducting case is more difficult, but the interaction kernel is

concentrated at high frequencies and may be taken to be

effectively instantaneous.
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