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Evanescent Field Raman Scattering by Roton-Type Excitations
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Evanescent field Raman scattering of light is proposed as a method for probing roton-type peculiarities
of the excitation spectrum of 2D electron gas in a strong magnetic field. These peculiarities are essential
for the modern theories of the fractional quantum Hall eA'ect. We predict the magnetoroton contribu-
tion to be comparable to the intensity, measured in the conventional backscattering geometry. This
method may also be applied to 3D samples, exhibiting the roton-type spectrum of quasiparticles. Partic-
ularly, in the familiar case of rotons in liquid He, we show that the contribution of evanescent field Ra-
man scattering by rotons is expected to be comparable to the Mandelstam-Brillouin contribution.

PACS numbers: 73.40.Hm, 67.40.Db, 78.30.-j

One of the most evident manifestations of the coopera-
tive phenomena in condensed matter physics are the
roton-type collective excitations, first predicted by Lan-
dau for He (see [1]). Some time ago, it was realized
that a similar kind of phenomenon should also occur in

the 2D electron gas, subjected to a strong magnetic field

[2]. In [3] it was suggested that using the roton-type
peculiarities of the excitation spectrum will be a test of
the modern theories of the fractional quantum Hall
effect. We recall that incommensurate structural transi-
tions in a solid are also preceded by softening of the exci-
tation spectrum at some finite wave vector [4]. There-
fore, the study of roton-type excitations is quite important
for understanding cooperative phenomena in condensed
matter.

In the case of liquid He, the roton wavelength k„ is of
the order of 10 cm. In the quantum Hall regime, X, is

expected to be of the order of the typical magnetic length,
XH ~ 10 cm [2,3]. Most of the spectral peculiarities of
incommensurate transitions also occur in the mesoscopic
range of wavelength, 10 -10 cm. Therefore, since
the typical wavelengths of laser radiation used in Raman
scattering (RS) exceed 10 5 cm, the direct observation
of rotons in the first-order RS experiments is impossible,
unless some disorder cancels the wave vector conservation
[5]. One should note that the RS by the pair of rotons
(second-order process) in liquid helium has been observed
in [6], where the total intensity was 10 3 times smaller
than that of the Mandelstam-Brillouin line.

The method of near-field tunneling microscopy [7]
proved to be useful in resolving features as small as a
tenth of the light wavelength. The correlation photon
spectroscopy from the region of an evanescent field was
used to study interface relaxation phenomena in polymers
[8].

In this paper, we wi11 show that if the geometry of the
evanescent field Raman scattering (EFRS) is suitably
chosen, the roton-type peculiarity is observable as the
first-order feature in the 2D electron gas as well as in

He, even if the wavelength of the roton is several orders
of magnitude shorter than the wavelength of incident
light. Therefore, the spatial resolution might be higher
than in the method of near-field tunnel microscopy. This
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FIG. 1. The geometry for 3D EFRS.

happens due to nonconservation of the normal component
of the wave vector as well as the strong enhancement of
density of states in the roton region of the spectrum.

Let us consider a simple geometry when the EFRS can
take place from the region z )a/2, denoted as "the sam-
ple" (Fig. 1). In the 2D case, "the sample" should be re-

placed by the plane containing the 2D electron gas
(2DEG) (see Fig. 2). For simplicity, we assume that one

of the light modes propagates in a transparent "slab," lo-

cated in the region Izi(a/2. We denote refractive in-

dices of the "slab" and the medium ni and ni, respective-

ly. Then, ni/n2 n) 1, n Ja The light, traveling in

the slab hz) ~a/2 with the wave vector k„, penetrates
into the region IzI )a/2 for some finite length b

For simplicity, let us assume that the light is polarized
perpendicular to the (y, z) plane. Then, the electric field

amplitude is

E(y,z) -=E,(y, z), E„-E,=-0,

E(y,z) Eoe " cos(k, z), Izi ~ a/2, (1)

E(y,z) Eue' " es'2 ' IzI ~ a/2.
Maxwell's equations and boundary conditions give us

0 0k2+k2 s; k, +b'
2

(e —1),
C C
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In this paper we will only consider the bulk excitations
created in the !z!) a/2 subspace which are character-
ized by the structure factor S(q„q,to), q = (q„,q»),
co=A —0' with 0' taken as the scattered photon fre-
quency. Likewise, in the 2D geometry (Fig. 2) we con-
sider the magnetoroton far from the AB edge. The role
of boundary excitations between the slab and the sample
will be considered elsewhere.

To obtain the nonresonant scattering intensity I. we

employ the general procedure [9], assuming that the in-
cident light produces a polarization

p;(z, x, t) =a;, (z, x, t)EJ(z, x, n),= & a/2. (3)

by means of the time-dependent polarization tensor u;~.
Let us consider diagonal RS, assuming that a;J —p(:,x,

!
t)b;i, where p stands for the density fluctuations in the
sample. In case of small energy transfer, one finds [9]

+oo
t

+~ ~ 0+++
I; (to) =C dz i

dz' d xd x' dte '"'(a(z, x, t)a(z', x', 0))

&& E;(z,x)EI(z', x') exp[ —ik i (= —=') —ik' (x —x')] .

z' =z cos(P) +x sin (P),

x' = —z sin(P) +x cos(P) .

(6)

The coordinate z' is directed orthogonally to the AB edge
in the 2DEG plane; x' is orthogonal to this plane. Substi-
tuting (5) and (6) and (I) and (3) into (4) and integrat-
ing over time and space coordinates, we arrive at the ex-
pression for the intensity of Stokes component as
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FIG. 2. The geometry of EFRS from the 2D electron gas.

with the factor C independent of to and p. Hereafter, we

will omit this unimportant factor. In (4), k~, k' stand for
the normal and tangential scattered light wave vector
components with respect to the boundary and (. )

means the thermodynamic average. In (4), we should
take into account (I) and (2).

Now, let us consider the EFRS from the 2D electron

system in a strong magnetic field. In this case, as we
mentioned before, the sample looks like a plane (Fig. 2).
The plane of the 2D electron gas is tilted by some angle P
with respect to the slab, with the magnetic field being or-
thogonal to the plane. In this geometry (PWO), the roton
moving in a plane is aff'ected by a normal (nonconserv-
ing) component of the momentum transfer of light.

In order to estimate the scattered light intensity, we

can use (4). However, the 2D nature of the scattering
volume should be essentially taken into account. In this
case, the density Auctuations can be expressed in the
Fourier representation as

p =g e'""'+'*'pq(t) B(x'), (5)
q

where q belongs to the 2DEG plane. In (5), rotation
around the y axis was performed as follows (Fig. 2):

~ dq, 2rt'S(q„q»)tr6(to+e )

(BsinP) '+ (q —Ak) '

Ak —=k,'sinP —k„'cosP, q» =k» —k,

rt
=—cos[(a/2) Qe(n/c) ' —k»'],

where 8 and k» are solutions of (2) and it was taken into
account that for Stokes component at T=O we have

dt e '"'(pit(t)pq(0)) =p, Sqtt6(e +to) . (8)

with Sq and p, being the static structure factor and the
average density of electrons, respectively. In (7), Izo
stands for the length of the AB edge (see Fig. 2). Since
we assumed that the beam has an infinite size in the x
direction, (7) is valid only when P & 8/d, where d is the
size of the beam. The extra factor of cos (P) in (7) ap-
pears due to the fact that only the parallel component of
the electric field is essential for the scattering.

For comparison, let us write down the expression for
the RS intensity measured in [10] in the backscattering
geometry. In this case, we have

Itt(to) =Ap, S&8(to+ eq), q =kt', —k~, (9)

where A stands for the area of the spot illuminated by the
incident light and k&, k& are the wave vector components
in the 2DEG plane of the scattered and incident light, re-

spectively. For the structure factor S(q) of the 2DEG,
one may employ the expression [2] from the "single mode

approximation':

Sq=qz/2m s (10)

where m, is the electron mass, and hence after 6 = l. In

the case of small !q!, the contribution of the magnetoro-
ton to Sq turns out to be negligibly small (—q ) [2].
Ho~ever, for q being close to the inverse magnetoroton
wavelength A., ', Eq. (9) provides a good description of
the density fluctuations, caused by magnetorotons.

%'e should note that the values of transferred momen-
tum !q! in (9) are small compared to the typical magne-
toroton inverse wavelength A.„'. At the same time, in the
case of (7), the integration over q, is performed. There-
fore, we obtain a considerable contribution from the re-

gion q, —X, '. In order to demonstrate this, let us take
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the excitation spectrum in the mell-known form

(q-x, ')'
e„=h,+

2m

first introduced by Landau for He [1],with h„m* being
some suitably chosen parameters. Then, a substitution of
(10) and (11) into (7) yields

1„(rp) =Lisp,
g' v'2m*

co ( —a, (12)'2m, loilqlrpl —g
'

where we took into account that k, ' » max(b, d,k). We
see that the roton contribution turns out to be strongly
asymmetric, with the inverse square root singularity.

Making use of the result [2], one can obtain

1/2m = [h(0) —A, ]A,
2

to be substituted into (12), where h(0) stands for the gap
of the Laughlin liquid at q 0. From [2], one can find

e 2

~(0) =-o. is ', ~, =-o.oss = —,
' ~(0), (i4)

dH
' '

dH

where e stands for the electron charge and lH is the mag-
netic length. Substituting (13) into (12), we obtain the
integrated intensity of EFRS as

Since X) loolir, rp, )e /elH, d-10'-10 11,, and L~a is a
macroscopic length, one may conclude that the EFRS in-

tensity from 2DEG can be much greater than the RS in

the backseat tering geometry.
In order to observe the gap excitations, a resonant RS

technique was applied in [S,lo]. Since in the EFRS the
intensity is considerably enhanced, one may use non-

resonant Raman scattering. In this case, one can avoid

troubles with mixing of the RS and luminescence.
As mentioned above, the 3D rotons may be observed by

the EFRS as well. The short-wave rotons (k, ~ 10 )
may be detected by neutron scattering, as was done for

He [11]. For larger X„probing of the single-roton spec-
trum by neutrons would encounter the well-known

diSculties. Therefore, EFRS may also be valuable to
study this kind of roton. Let us demonstrate that the ro-
ton contribution to inelastic scattering intensity is also
significant in the 3D case.

As an example, let us consider the EFRS from liquid

He at T 0. In this case, however, the acoustic pho-
nons provide an additional contribution to the EFRS.
We will show that this contribution does not exceed the
roton contribution and both of them can be identified.
The excitation spectrum can be taken in the form ([1])

x g
2

1
IH

'

CkolH(rp) =—L~ap,
2 2mpkp Qg [g(0) g ]

(1s)

uq, q 0,

(q —qp)
'h+, q=—qo,

2M

(i9)

The integral intensity in the backscattering geometry
[S,lo] may be estimated from (9) as

la =-d 'p, q'/2m, ro, , (16)

where rp, is the cyclotron frequency. The ratio of these
two contributions turns out to be

IH Laa 9 o)c
2

1

la d k„q qg [g(0)
(17)

Choosing q =2m/A, , with k being the wavelength of light,
and employing the estimates (16) and (17) as well as
X, =-IH, ri=- 1, we obtain

Laa~

/H e2/d

where u stands for the sound velocity, 5 is a roton gap,
and qo is the roton wave vector; M denotes the He ro-

ton eA'ective mass. Using (4) analogously to (7), we ob-

tain for the Stokes component of scattered radiation

+" dq, 2q' Po(e'+q')
l(rp) -A

2~ b'+(q, —k')'
x orb(a)+ oiq), (2o)

where the structure factor for "He was taken in the form

(10), with the electronic mass and the averaged density
replaced by He atomic mass M and density pp, A stands
for the area of the boundary surface. For oi & 6 in (20),
the upper line of (9) should be used. It corresponds to
the Mandelstam-BriIlouin feature in the bulk RS. For
this contribution, we have

APprl 1 1

S 2Mu +~i (uq)2 b u +[+~2—(uq)~ —k~] $ u +[pro (uq) +kz]
(2i)

where —p & co & —ulql; b; kz, and ri have the same
meaning as in (7). For ro & —A, the roton part of spec-
trum (18) gives an additional contribution. Making use
of the inequality b= lql =k&«qp= 10 cm ', the in-

tensity of scattering by rotons can be expressed from (20)
as

-
( )

~Porl 42M (22)
l~l~l~l —&

It is worth noting that this contribution does not contain

any smallness in the ratio I/kqp« 1. From (21) and (22)
one can see that both features have the inverse square
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Appg ~+
1I„=- dq, a+q '/2m *

r i ]/p
~Ppg 2M*

M h,

(23)

The main contribution to I, comes from the region

iq, —k i. i
~ b. Therefore, one obtains

Apori Jk i +q
Mu 8

(24)

Using (23), we can obtain the ratio R of EFRS by rotons
to that by phonons:

u6

v ki+q'

]/2
2M*

(25)

As was mentioned above, the quantity 8 is of the same or-
der of magnitude as k& and iqi. Therefore, we can esti-
mate R in (24) as

]/2
M*u

(26)

where u=10 cm/s, m*=10 g, 6—= 1 K. Substitu-
tion of these values into (25) gives R=—10. It implies
that the roton contribution to the scattering intensity
should be about 1 order of magnitude stronger than the
one due to acoustic phonons.

We should note that the total intensity is proportional
to the effective scattering volume V,a. In the case of bulk

scattering, we have V,g'"=Ld, where I.—stands for the

length of the sample and d is the beam diameter. In the
case of evanescent scattering, V,rr =Ldb. Therefore, t—he

ERS is reduced by a factor of -b/d in comparison with

the bulk Mandelstam-Brillouin intensity. Since d is of
the order of tens of the wavelength, we cannot expect any
serious reduction of the EFRS in comparison to the bulk
Mandelstam-Brillouin line.

The EFRS may also be useful in studying nonliquid

substances, where the roton peculiarity of the quasiparti-
cle spectrum would rather be nonisotropic and assigned to
particular points of the Brillouin zone. In this case, the

root singularity in c0 near the thresholds u)qi and 6, re-

spectively. Note that, as shown in [12], the second-order
RS due to a pair of rotons in He also has a square root
singularity, with the threshold twice the roton gap.

Let us compare the integrated intensities I, =fdco
xI, (ro) and I„ fdhoI, (co) of these features. An integra-
tion yields

Apori ~+ Qq, +q
I, dqz

Mu 4 — b +(q, —ki)

EFRS intensity may have the inverse square root singu-

larity as a function of frequency near the roton creation
threshold. This eA'ect should be much stronger than the

usual RS square root singularity in the presence of im-

purities. This happens due to the quasi-10 geometry of
the evanescent field.

Therefore, we conclude that the EFRS on roton-type
peculiarities of the spectrum gives a considerable contri-

bution. It may be applied to the 20 electron gas in a

high magnetic field in experimental circumstances close
to those used recently by Pinczuk and collaborators

[5,10]. It also seems to be possible to observe the first-

order EFRS by rotons in the 3D case for different types
of excitations, particularly the rotons in liquid He.
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