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Vortex Sheet in Rotating Superfluid He-A
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A new state of rotating superfluid He-A has been found. Instead of quantized vortex lines, it
consists of a continuous vortex sheet. The sheet has as a backbone a topologically stable domain
wall called soliton, to which the vorticity is bound. The sheet folds to equidistant layers that fill
uniformly the rotating container. The new state can easily be created experimentally in spite of its
higher energy. Its identification is deduced &om nuclear magnetic resonance.

PACS numbers: 67.57.Fg, 47.32.Cc, 74.20.De

Symmetry-breaking phase transitions lead to ordered
systems in which topologically stable defects can exist.
A recurring configuration is the confinement of one ob-
ject to another of higher dimensionality. Such topolog-
ical confinement can be divided into two types: (i) An
object may serve as a boundary for a higher dimensional
object, or (ii) an object may exist only within another
object, from which it cannot escape to the world out-
side. Examples of the former type are a monopole as a
termination point of a disclination line in liquid crystals
[1], a cosmic domain wall with a string as its edge line

[2], an antiphase boundary terminating to a dislocation
line in ordered binary alloys [3], the planar soliton in su-
perfiuid sHe-B emanating from a vortex line [4], and a
possible half-quantum vortex confined to the borderline
of three crystal grains in unconventional superconductors
[5]. A well-known example of the latter type is a Bloch
line within a domain wall in ferromagnets [3).

Here we report an observation of the latter kind of
confinement in rotating sHe-A. The higher dimensional
object is a topologically stable domain wall, called soli-
ton. The corresponding one-dimensional object turns out
to be a specific type of quantized vortex line, which exists
only within the soliton. A soliton with an array of such
vortices forms a vortex sheet that we call a vortex soliton.
This object is supported by rotation. It uniformly ills
the rotating container by folding into equidistant layers,
as illustrated in Fig. 1.

Historically, vorticity concentrated in sheets was sug-
gested by Onsager [6] and London [7] to describe the
superfluid state of 4He under rotation. It turned out,
however, that a vortex sheet is unstable towards breakup
into separate quantized vortex lines in 4He. Nevertheless,
a later calculation of the spacing between vortex sheets
by Landau and Lifshitz [8], who did not impose a quanti-
zation requirement on the sheets, happens to be exactly
to the point for the vortex soliton in He-A.

Small scale structure. —T-he anisotropy of sHe-A is de-
scribed by two unit vectors: d is the spin quantization
axis and 1 is the orbital angular momentum Mcis [9].
These are coupled only weakly by the dipole-dipole in-
teraction energy fo = —2g~(d . 1) . It follows that the

ground state of the liquid is dipole locked, d = kl. The
soliton is a surface separating domains having parallel
and antiparallel orientations of d and 1. The core of the
soliton has a smooth bending of d and 1 [10]. A large en-

ergy barrier prevents the breakup of this surface into sep-
arate pieces because a cut would require the nucleation of
singularities in the d Beld [11].Solitons are often created
in inhomogeneous transitions into the superfiuid state,
and are well known from NMR measurements [12]. In
the following we will assume a magnetic field H &) 3 mT,
which fixes d perpendicular to H.

The soliton has two degenerate states, which can be
obtained from each other by a symmetry operation. The
degeneracy gives rise to a topological object, a kink, sep-
arating two states; see Fig. 2(a). The kink has no sin-

gularity in the d and 1 fields and is equivalent to the
Bloch line. The topological characteristic of such lines is
vt = (1/4vr) f d2:dy 1 (8 1 x 8„1).This is the normalized

area which 1(r) sweeps on a unit sphere while r varies on
the cross-sectional plane of the line. For one kink this in-
variant is fractional vt = +1/2. Because of the magnetic
field, the corresponding invariant for d is trivial, vd = 0.

The specific property of sHe-A is that the circulation of
the superfluid velocity is directly related to the 1 texture
[13]: The circulation on a closed path around a kink is

$ v, dr = 2zvt, where e = h/2m is the circulation quan-

FIG. 1. Macroscopic structure of the vortex soliton in our
cylindrical container rotating at 0 = 0.58 rad/s. The struc-
ture is calculated assuming one sheet in contact with the wall,
and following a local minimum of energy during increasing A.
The energy is approximated by the leading terms (isotropic
kinetic energy and surface energy).
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resented by the shear flow v„=—20yx parallel to the
planes. In the gap between nearest planes, the vortex-
free v, is constant and equals the average v„to minimize
the counterflow. Thus the velocity jump across the vor-
tex sheet is Av, = 20bx. The counterflow energy per
volume is (1/b) J 2p, ~~v dy = s p, ~~O 6, where p,

~~

is the
superfluid density for the flow along 1. The surface en-
ergy per volume equals cr/b Mi.nimizing their sum with
respect to b one obtains the anisotropic version of the
result in Ref. [8],

FIG. 2. Schematic small-scale structure of (a) a kink in a
soliton and (b) a vortex soliton. The soliton wall is along the
x-z plane, the vortices are parallel to the z axis, and H 3 x,
The arrows denote the unit vector l whereas d x. In the
vortex soliton (b), the kinks form a periodic structure with
alternating twist and bend sections.

turn. This means that the kink represents a nonsingular
vortex with the quantum number N = 2vi = +1.

The kinks can be used as building blocks for larger ob-
jects. Two cases are of interest here. The first object
is constructed by closing a soliton sheet to cylindrical
shape. A cylinder without kinks would probably shrink
away. The minimum number of kinks is two because
v~ —v~ has to be integer for an object surrounded by
dipole-locked liquid. When the kinks have the same sign
of circulation, i.e., the total N = k2, the cylinder cannot
disappear. This minimal soliton cylinder is nothing but
the (two-quantum) vortex usually observed in NMR ex-
periments [14]. The opposite limiting case is the vortex
soliton with very large N. There the kinks form a pe-
riodic structure; see Fig. 2(b). The structure alternates
between a twist and a bend of I in intervals of p/4. The
period p, containing two quanta of circulation, is deter-
mined by the usual condition that the density of circula-
tion quanta equals 2A/~, where 0 is the angular velocity
of rotation. Thus p = r/Ab where b is the distance be-
tween the sheets.

The vortex soliton is energetically stable against dis-

sociation into two-quantum vortices. This is because
the distance between quanta in the vortex soliton (p/2;
see below) is larger than in the two-quantum vortex
(= 30 pm), and energy is required to push the quanta
closer to each other.

Macroscopic structure. —Let us find b, the equilibrium
distance between the sheets, in a container rotating with
0

]~
H

~]
z. It is determined by the competition of the

surface tension o of the vortex soliton and the kinetic
energy of the counterflow v = ~„—v, outside the sheet.
Locally the folded sheet can be considered as a system
of planes. The motion of the normal component, which
corresponds to the vorticity V x ~„=20i, can be rep-

Substituting p,
~~

and o (see below), Eq. (1) yields ti =
360 pm at 0 = 1rad/s, which is comparable to the
nearest-neighbor distance of 280 pm in an array of two-

quantum vortices. This macroscopic description of the
rotational state of Fig. 1 becomes inadequate only at
small 0 —0.05rad/s, where b becomes comparable to
the size of our container.

Experiment. —NMR measurements were performed on
a cylindrical container with radius R = 2.5 mm and
height 7 mm. Both the rotation 0 and the magnetic
field H are axial. The transverse NMR absorption spec-
trum is shown in Fig. 3. The various resonance frequen-
cies are customarily expressed as ~ = uo + R~&u~~. Here

uo ——pH is the Larmor frequency and m~~ the longitu-
dinal resonance frequency of the A phase. The main
absorption peak at R~ = 1 arises from dipole-locked re-

gions. The temperature dependence of u~~ was used for
thermometry. The frequency shifted satellite peaks with

Rg ( 1 result from the excitation of spin-wave modes
localized in the dipole-unlocked (d g kl) regions. The
peaks marked with R~ = 0.86 and R~ = 0.81 in Fig. 3
represent solitons, which often appear after rapid cool-

ing into the superHuid state. These satellites disappear
under rotation while new ones appear signifying the pres-
ence of vorticity. The satellite at R~ = 0.64 corresponds
to the equilibrium array of two-quantum vortices [14].
The larger peak at Ri = 0.66 has been observed in ear-
lier experiments but its origin remained unexplained [14].
We find that it is shifted in frequency relative to the usual

vortex satellite. We associate it with the vortex soliton.
This conclusion can be reached in several difFerent ways,
some of which will be discussed belo~.

Creation. —The creation of the vortex-soliton state un-

der slow acceleration depends on the initial state before
the rotation is started. If there are no solitons in the
vessel, the acceleration results in the ordinary vortex sig-

nal R~ = 0.64 of Fig. 3. The same result is obtained by
starting from the state marked with B~ ——0.86. There
the satellite peak is associated with a soliton perpendicu-
lar to the field H [10]. However, if the rotation is started
in the state Bg ——0.81, even with an acceleration as
small as dA/dt —10 rad/s, the vortex-soliton signal
(R~ = 0.66) results. The satellite at Ri = 0.81 comes
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FIG. 3. The cw NMR absorption spectrum. The frequency
shift Dv = v —vo is measured &om the Larmor frequency vp.
All spectra have their main peak roughly at R~ ——1. Satellite
absorption peaks with varying frequency shifts are formed
by topological objects. The two lower spectra are measured
under rotation. The peak at Rg = 0.64 arises from the usual
vortex state, which consists of two-quantum vortex lines, and
R~ = 0.66 we associate with the vortex-soliton state. The
three upper spectra are recorded at 0 = 0 right after cooldown
into the superfluid state. One of them shows no satellite peak;
the vertical scale of the figure is normalized to the height of
its Rz ——1 peak. The two additional spectra display satellite
peaks which arise from solitons. When rotated, the state
marked with R~ ——0.81 (soliton with plane ]] 0) gives rise to
the vortex soliton, whereas the two other states (soiiton peak
absent or at R~ = 0.86) result in vortex lines.

FIG. 4. Integrated NMR absorption of the satellite peaks
at R~ ~ 0.6 as a function of the rotation velocity A. The
fitted curves agree with theory for both the vortex (I„oc0)
and the vortex-soliton (I„oc0 ~ ) states. The data are
normalized to the total NMR absorption I~,~.

K, & 8K,"'=2K ' "K2K ( Ks )
(2)

riod p (Fig. 2). This is a reasonable approximation since
theoretically s = 12 ym and p = 180pm at A = 1 rad/s.
We find that both the surface tension o in Eq. (1) and
the NMR frequency are determined by the twist section,
which has the lowest energy. The condition s « p allows
us to neglect the derivatives along the soliton, and we get
following the procedure of Ref. [10] that o = 2/Kig~
and

f om a soliton with its plane approximately parallel to
H

~]
A. This was the first clue that the large satel-

lite (R~ = 0.66) originates from vorticity accumulated
within a soliton ]] A.

Only two out of twenty rapid cooldowns produced the
soliton state R~ = 0.81, which gave rise to the vortex-
soliton state. A practical way to create the vortex soliton
is periodic modulation of A. The drive can be sinusoidal
A = b,Asin (2vrt/r) with an amplitude AA & 0.3 rsd/s
and a period r & 30 s. The vortex-soliton state is invari-
ably found to evolve from any initial state if the modula-
tion remains switched on for several minutes. Sometimes
it could also be created by one sharp acceleration.

Once created, it was possible to grow and shrink the
vortex soliton by changing A. The state showed no de-
cay at temperatures below 0.9T„andonly slow decay at
higher temperatures. In fact, it was dificult to get rid of
the vortex soliton: Even 1 h after stopping the cryostat,
it was sometimes recovered by slow acceleration.

NMR absorption. —Some properties of the vortex soli-
ton can be calculated analytically in the limit that the
thickness of the soliton s is much smaller than the pe-

Here Ki and Ks are bending-energy coefficients defined
and tabulated in Ref. [15]. The calculated frequency
agrees with the observed one. The usual two-quantum
vortex and the vortex soliton are exceptional because of
their low values of R~. All other extended objects in
bulk liquid (singular vortices, vortex-free solitons) have
higher values, and thus cannot explain the experimental
observations.

The intensity of the satellite peaks as a function of the
rotation velocity is plotted in Fig. 4. The vortex peak
grows linearly with A. This is natural because each vor-
tex contributes individually to the absorption, and their
number is linear in O. The vortex-soliton peak behaves
distinctly differently, being approximately proportional
to 0 / . This dependence cannot be explained by a dif-
ferent structure of separated vortex lines. Instead, the
vortex sheet offers a simple explanation: The absorption
is expected to be proportional to the length of the soliton
(in the plane J A), which equals n R2/b oc A2i's. Our cal-
culation also gives the prefactor to the 0 ~ dependence
in agreement with experiment.

Oroath. —A state with a given amount of circulation
can be stable only at rotation velocities in some interval
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H = 0 showing only slow decay. This can be qualitatively
understood so that the vortex soliton remains essentially
unchanged at H = 0, but 0, for vortex lines is only one-
half of the value at high field.

In conclusion, the vortex soliton can easily be gener-
ated experimentally in rotating sHe-A. Its stability arises
from the special combination of one- and two-dimensional
topological objects. Its macroscopic form consists of con-
tact lines with the container wall and folding to equidis-
tant layers whose density increases with increasing rota-
tion velocity. It represents a new way of superfluids to
respond to rotation. A similar state could exist in uncon-
ventional superconductors for which some models incor-
porate the necessary ingredients of broken time-inversion
symmetry and order-parameter domain walls.

FIG. 5. Critical angular velocity 0, for nucleating new vor-
ticity in the absence (fllled circles) and in the presence of the
vortex soiiton (open circles and squares). In the latter case
the new vorticity will appear in the vortex soliton, whereas in
the former case it appears as separate vortex lines.

0i (0 ( Ag. For 0 ( Ai vorticity will annihilate on the
side wall of the container, while at 0 & 02 new vorticity
is created. The width of this window is defined as the
critical angular velocity 0, = Az —Ai. Figure 5 shows
that the measured 0, depends on whether the vortex
soliton is present or not. In its absence, usual vortices are
created, and 0, is constant. This can be understood so
that a new vortex will nucleate whenever a critical value

v, of the counterflow velocity v = v„—v, is reached at
the wall of the container. Because here v = (0 —Ai)R,
it follows that 0, = v, /R is constant —0.2 rad/s in our
experimental setup.

The presence of the vortex soliton leads to a reduced
0,. The sheet grows when 0 exceeds As, i.e. , the new

vorticity is added to it and not as separate vortex lines.
From the low 0, we deduce that the vortex soliton has to
be in contact with the cylindrical wall of the container.
This is because a closed sheet cannot change its circula-
tion (except by emitting or absorbing vortices). In con-

trast, new vorticity can relatively easily enter the sheet
at the line of contact with the cylindrical cell wall. The
lower 0, in the vortex-soliton state explains why this
state can be grown in spite of its presumably larger en-

ergy compared to the usual vortex state.
The 0, of the vortex soliton can be qualitatively un-

derstood by postulating that the length scale determin-

ing v, is the core size of the vortex kink. This gives

A,R —z/p —Ab oc AiIs, which roughly explains both
the order of magnitude and the dependence on A.

The vortex soliton cannot be created in zero field but
if created in higher field, it remains metastable also at
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