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Phase Separation of Asymmetric Binary Hard-Sphere Fluids: Self-Consistent Density
Functional Theory
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The fundamental-measure free-energy density functional for general inhomogeneous hard-sphere
fluids predicts phase separation in bulk binary mixtures with large size ratios, R2/R| 4, when the
packing fractions for the two species are comparable, in qualitative agreement with recent experiments
on "nearly hard sphere" colloidal particles. These results open the way, using the same free-energy
functional, for studying external field effects (e.g. , sedimentation and confining walls) on the entropically
driven demixing transition, as encountered in real experiments on colloids.

PACS numbers: 61.20.Gy, 64.70.Ja, 82.70.Dd

Phase separation in a fluid binary mixture of hard
spheres is a long standing fundamental problem in statisti-
cal mechanics [1],which is the object of renewed theoreti-
cal and experimental investigations [2—8]. Fluid phase
separation in simple ("atomic") mixtures is usually in-
duced by enthalpic driving forces: steric effects due to
nonadditive effective diameters, and van der Waals at-
tractions. The hard-sphere demixing, however, can be
driven only by entropic effects, and is part of the gen-
eral question of how phase separation can be induced by
purely repulsive interactions [9]. The physical origin of
hard-sphere fiuid phase separation is the osmotic depletion
effect [10]:When the surfaces of two large spheres ap-
proach within a distance less than the diameter of a small
sphere (the small spheres are expelled from between the
large ones), the pressure exerted by the small spheres on
the outer surfaces is no longer compensated, leading to
an effective attraction between the large spheres. Ever
since Lebowitz and Rowlinson [1] showed that within the
Percus- Yevick (PY) closure of the Ornstein-Zernike equa-
tions, hard-sphere fluid mixtures are completely miscible
for all concentrations and size ratios, it has been gener-
ally believed that hard-sphere fluids never phase separate.
This was contested recently by Biben and Hansen [2]
who found that certain more accurate closures [11]predict
phase separation for dense binary hard-sphere fluid mix-
tures when the size ratio differs considerably from 1, and
the partial packing fractions of the two species are com-
parable. Motivated by this result, the existence of an en-
tropically driven demixing transition was demonstrated in
simple, exactly solvable, two-dimensional hard-core lat-
tice models [3,4]. Direct tests of the results from these
approximate theories, using numerical simulations of the
relevant systems with highly asymmetric size ratios, are
precluded, however, by severe ergodicity problems [12]
even for a ratio R2/Ri ——3. The hard-sphere demixing is
supported by recent experiments on asymmetric "nearly
hard sphere" sterically stabilized [6] and charge stabilized
[7,8] colloidal suspensions. Bulk phase separation was
observed into two disordered phases, and a new ordered
phase was found to be located on the cell walls [8]. The

analysis of these experimental results requires a theoreti-
cal tool which is able to take into account the effects of
external fields, in particular gravity and confining walls.

This Letter offers a new and general theoretical frame-
work for addressing the question of hard-sphere phase
separation in external fields, by employing a comprehen-
sive free-energy functional [13] for inhomogeneous hard-
sphere fluid mixtures. After testing the high accuracy and
self-consistency of the model in describing pair correla-
tions for bulk hard-sphere mixtures, I confirm that bulk
fluid mixtures of hard spheres are unstable against phase
separation for sufficiently asymmetric size ratios, in quali-
tative agreement with the experimental results on colloidal
suspensions. These results open the way (by using the
same free-energy functional) for studying the entropically
driven demixing also for nonuniform hard-sphere fluids
and, in particular, for investigating the effects of gravita-
tional settling and confining walls, as encountered in ex-
periments with colloidal particles.

A general powerful method for both uniform and
nonuniform fiuids is the density functional theory [14].
The central quantity is the excess (over "ideal gas" con-
tributions) free energy, F,„Hp;(r)H, a unique functional
of the spatially varying one particle densities, {pgr) $,
which originates in interparticle interactions. The density
profiles p;(r) for the fiuid subject to external potentials
u;(r) which couple to the particles of type i are obtained
by solving the Euler-Lagrange equations for the mini-
mization of the grand potential. There is an underlying
connection [14] between the structure of the nonuniform
fluid and that of the corresponding bulk, uniform fluid,
made in the "test particle limit" of the density profile
equations: When the external potential is obtained by
fixing a test particle of type t at the origin, u;(r) = @„(r),
where P„(r) is the corresponding pair potential between
particles of types t and i in the fluid, then the density
profiles, normalized to unity at large r, correspond to
the pair distribution functions in the bulk uniform fluid
g„(r) = p;(r)/p; 0, wh. ere {p; 0] are the average densities
of the bulk fluid. The test particle limit of the density
profile equations takes the form [13]
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where h„(r) = g„(r) —1, and c;, (r) are the uniform
fluid, bulk limit of the direct correlation functions as
obtained from the second functional derivative (FD)
of the excess free-energy functional. The symmetrized
bridge function b„(r) = [x;b„(r) + x,b;, (r)]/(x, + x;) is
obtained as the appropriate weighted bulk average of the
bridge functions b;, (r), which are derived from the bridge
functional B;[{pj(r)};r] by using p;(r) = p; og„(r),

b„(r) = B;H pjogo(r)};rj.

The bridge functional [13] is obtained from the sum of all

the terms beyond the second order in the functional Taylor
expansion, around the uniform fluid limit, of the excess
free-energy functional. The exact free-energy functional
must obey the "test particle self consis-tency": The exact

g;, (r)'s as obtained from the solution of the coupled
density profile equations (1) and (2) are identical to those
obtained from the Ornstein-Zernike relations,

h„(r) = c„. (r) + gphcf dr'c", (Ir —r'l)hp(r').
1

However, given an approximate model free-energy func-
tional, it can be optimized at second order [13] by im

posing the test particle s-elf consistency, i.e., by coupling
Eqs. (1) and (2) with Eq. (3). The resulting coupled equa-
tions (1)—(3), for both {g;,(r)} and (c;~(r)}, in which the

bridge functions are obtained from the given, fixed bridge
functionals, represent a new method for calculating pair
correlations for bulk fluid mixtures. This method is self-
consistent [13] with the global application of the same
model to the general density profile of inhomogeneous
fluids. There is no attempt, however, to impose any

specific structural-thermodynamic consistency relations;
everything is predetermined by the quality of the given
free-energy functional.

The present approach employs a free-energy functional
for the inhomogeneous hard-sphere fluid mixture which
is based on the fundamental geometric measures of the

particles [13]. As a special case, this functional derives

in a unified way the Percus-Yevick direct correlation
functions [1] and the scaled-particle [15] equation of
state for the uniform hard-sphere fluid mixture: (a) The
uniform (bulk) fluid limit of the model excess free

energy is equal to its scaled-particle-theory value for the
uniform hard-sphere mixture, corresponding also to the
PY "compressibility" equation of state. (b) The second
functional derivative of the model functional yields the
PY direct correlation functions, i.e., c,~ (r) = c)J (r). .

This free-energy model has already been tested very
successfully against computer simulations of density

profiles for a large variety of situations where size or
packing effects play an important role [13], but in view
of (a) and [1] it does not predict phase separation for
bulk hard-sphere mixtures. Using the optimization by
the test-particle method [13], as described above, this
free energy is presently applied to bulk binary mixtures
of hard spheres, of radii R], R2 and partial densities p;0
(i = 1,2), with special emphasis on large size asymmetry

(Ri « R2) when the packing fractions, rt; = 4m p; oR;/3,
are comparable (i1) —= rt2 and hence the concentrations
obey xz « xi =— 1). Phase separation is signaled by a

strong enhancement of concentration fluctuations, leading
to the divergence of the long wavelength (k 0) limit of
the concentration-concentration structure factor, S„(k) =
x,xz[x2S»(k) + x, Szz(k) —2(xix2)" Siz(k)], when the

spinodal line is approached; i.e., the Gibbs free energy
turns from a concave to a convex function of x~,
S„(0) = Nkt)T/(8 G/dx, )N pT. Defining D, (k) =
[1 pl,ocll(k)][1 —

pz,oc2z(k)] —pi,op2oc(2(k), then

the diagnostic chosen by Biben and Hansen [2] to
characterize the spinodal, A —= xix2/S„(0) = 0, can be
equivalently expressed by [16] D, (0) = 0, in terms of
the k 0 limit of the Fourier transforms of the direct
correlations (c;,(k)}. The calculation of the bridge
functions from Eq. (2) involves, in our model, only
integrations of the density profiles with simple weight
functions [13]. Thus, our methods for solving the integral
equations and for calculating the spinodals are technically
very similar to those described in detail in Ref. [2].
Supplementing the single-component results presented
in [13], the present calculations show that our model

hard-sphere free-energy functional obeys automatically,
and to high accuracy, the whole list of thermodynamic
self-consistency requirements also for mixtures, includ-

ing "virial compressibility, " "zero separation theorem, "
"test-particle, " and the "b;~ = b,; symmetry. " Under

all conditions which could be checked by simulations,
our consistent theory significantly improves on (the
already accurate) PY results for the pair correlation
functions. The details of these extensive calculations will

be published elsewhere. The main results are presented
in Fig. 1 where they are compared with other calculations
and with experiments on colloids. For any given value of
the ratio s = R2/Ri the critical pressure P„below which

no phase separation occurs, corresponds to the point with

the largest value of g2. For s = 10, the case consid-
ered in detail in Ref. [2], we predict a much higher P,
(P,* = 8P,R)/koT —= 0.3 versus 0.01 ( P,' & 0.1), cor-

responding to a much lower critical concen. tration of the

large spheres (x2 =—0.002 versus x2 =—0.02), i.e., a nar
ro~ range, g2 ( 0.25, in comparison with the wide range,
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gz & 0.45, predicted in Ref. [2]. The "self-consistent"
spinodals obey approximately sI = gI + g2 =-const.
For s ~ 4 the spinodal region for our fiuid model is in
the region where the system is expected to be solid, but a
phase separation instability of the fluid is predicted by our
calculations for s ~ 4. Like Biben and Hansen, we could
not find the second spinodal at higher concentrations of
the large spheres.

The depletion attraction of the large spheres, including
its enhancement [8] close to a wall, is built into the
PY closure and into the scaled-particle theory which,
nevertheless, predict no phase separation. The PY de-
pletion attraction is enhanced by the thermodynamically
consistent closures used here and in Ref. [2], enough to
produce a spinodal instability. This mechanism becomes
clearer through the following sirnplifi. ed density functional
calculation. The PY functions are the obvious starting
point [recall c," (r) = c;. (r)]"for the iterative solution of

~ PYthe self-consistency equations. Inserting g;, (r) = g;1 (r)
into the right hand side of Eqs. (2) and (1) we obtain
the first-order results b;, p(r) and g;1 p(r). We observed
that the bridge functional is not sensitive to details of
the pair functions, b;J(r) = b;J p(r), and noted the slow

FIG. 1. Theoretical spinodal lines and experimental phase
separation results in the (qI, g2) —= (g,m, II, gI,~,) plane for
different values of the size ratio s = R2/RI ) 1. The full,
long-dashed, and medium-dashed lines correspond to the self-
consistent (SC) density functional theory results for s = 10,
6, and 4 (from bottom to top). The full squares, circles, and
triangles are the corresponding results from the present first-
order theory. The letters mark the regions of maximum (A),
minimum (B), and intermediate (C, D; pc =- pp) pressures for
s = 10, as a generic trend for all values of s. The dotted line
represents the solution to Eq. (27) in [5], for s = 10. The
dot-dashed line represents the results of Ref. [2], for s = 10.
The reference triple dot —dashed line, g =

g& + g2 =-0.494,
marks the s = 1 freezing and serves as a visual aide. The open
diamonds represent the s =- 6 experimental results for silica
particles (covering triangles and squares in Fig. 1 of Ref. [6]).
The ants and open triangles represent the s = 7 experimental
bulk phase separation results for polystyrene spheres (same
symbols as between the middle and upper lines in Fig. 3 of
Ref. [8]).

variation of the cavity distribution function along the
iterations process, H;, (r). = h;J(r) —c;i (r) . —b;, (r) =
h;, (r) —c;J"(r) —b;, p(r). From these we obtain the

following first-order correction to the Percus- Yevick
direct correlations: c;J(r) = c;i (r) + [g;J p (r) —g;,"(r)]
Inserting this approximation into the diagnostic equation,
D, (0) = 0, we calculate the corresponding approxi-
mation for the spinodal. This approximation can be
rewritten as he;, (r) = 5g;, (r), and reinterpreted as

(e.g.) a mean-spherical approximation, b, c;, (r) =
—h4;J (r)/kpT, where the additional depletion inter-
actions on top of the reference PY result are evaluated
as LLC;J (r)/k~T = Ag;, (r)—. The unstable regions
as encircled by the spinodals from this simplified model
(Fig. 1) decrease with decreasing size ratio, s = R2/Rg =
10,6, 4, and eventually disappear for s -=3.S. Note
that the spinodals from the self-consistent theory seem
to merge with the first-order results at small packing
fractions of the large spheres. The s = 10 results from
another semianalytic model [5] partially agree with our
first-order density-functional correction to the PY theory
(see Fig. 1). In all these models and in Ref. [2], the
spinodals are driven by what amounts to small corrections
(recall that x2 « xt, and see, e.g., Fig. 3 in Ref. [5]) to
the PY compressibility equation of state. The results
are sensitive, however, to the nature of these small
corrections, and the accurate prediction of the hard-sphere
demixing transition remains a challenging problem.

The self-consistent model and its first-order approxi-
mation do not consider the solid at all, and their predic-
tions for the coexisting phase (at higher concentration of
the large spheres) are inferred indirectly by comparing
the predicted spinodals with the expected region of sta-
bility for the fluid phase (roughly indicated by the line

g = ski + sI2 =—0.494 in Fig. 1). The first-order calcula-
tions for all size ratios, and the self-consistent results for
the relatively small ratios (s ~ 5) reinforce the conjec-
ture [5, 17] of a/iuid solid phase -separation, preempting
a fluid-fluid phase separation at a spinodal instability, i.e.,
coexistence between a solid of high concentration of large
spheres, and a low concentration fluid. The self-consistent
results for larger ratios (s ) 5) predict a much narrower
spinodal range, and thus a corresponding relatively small
instability region in the (g&, g2) plane, favoring a fiuid
/quid phase separation. The interparticle interactions in
the experiments [6—8) are expected to be well represented
by hard-sphere potentials. The experiments were done
by a straightforward approach: mixing commercially pre-
pared polystyrene particles [8] or custom prepared silica
particles [6] of different sizes, and observing them visu-
ally over the course of several days. A number of di-
ameter ratios were investigated in [8], and one system
with s -=7 was explored in detail. Bulk phase separation
into two disordered coexisting phases was observed in [8].
The sample separated into upper and lower layer~ which
differed in optical opacity. Phase separation was not
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observed in samples with both s ~ 7 and rJ ~ 0.3. In [6]
only one size ratio of s —= 6 was considered, and a sud-
den change of sedimentation velocity with sample con-
centration signaled the instability. The sediment that was
obtained was rather fluid, but the strong gravitational set-
tling of the large spheres makes it very difficult to fully
determine the nature of the coexisting phase. The sur-
face crystalline phase reported in [8] was not found in

[6] for reasons explained in [8]. The spinodals which we
calculated cannot be fully compared with the experimen-
tal results because the spinodal does not coincide with
the phase transition and because the silica and latex par-
ticles are not exactly hard spheres. Bearing this in mind,
our self-consistent results for the spinodals provide a rea-
sonably good description (Fig. 1) of the phase separation
results and their trends as obtained from these recent
experiments on colloidal particles. Our self-consistent
model is able to predict the narro~ range, g2 ~ 0.2, of
the phase separation, as found in the experiments, and fa-
vors the coexisting fluid phase, as also found experimen-
tally. But of course a much more detailed calculation is
required to predict the full phase diagram, the nature of
the different phases, and their respective concentrations.

The present study demonstrated the capability of the
optimized fundamental-measure free-energy functional to
address the interesting question of phase separation in bi-

nary hard-sphere mixtures, for which new experimental
and theoretical work is just emerging. Further develop-
ments within the density functional method are required
for enabling a calculation of the phase diagram for con-
fined hard-sphere fluid mixtures, including surface phase
separation as described in Ref. [8].
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