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Dynamics and Statistics of Inverse Cascade Processes in 2D Magnetohydrodynamic Turbulence
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The inverse cascade of the mean square potential A in a 2D magnetofluid randomly forced at small
scales is studied by numerical simulations. One finds the spectrum Ak = 2.6e& k " . The cascade
proceeds by coalescence of current filaments, which is a fast reconnection process owing to high
turbulent resistivity. Statistics of BuI and BB& are strictly Gaussian, also in the condensation phase of
AI, at k = 1. Only when the coherent magnetic field intensity exceeds that of the fluctuations, non-
Gaussian statistics in BB& occur, which are, however, entirely due to the static magnetic structure and
not associated with intermittency of the small-scale turbulence, the latter remaining Gaussian.

PACS numbers: 47.27.Eq, 47.27.6s, 47.65.+a

Two-dimensional (2D) magnetohydrodynamics (MHD)
turbulence has recently attracted considerable interest
(see, e.g., [1—4]). Contrary to 2D Navier-Stokes turbu-
lence, which is fundamentally different from that in 3D,
2D and 3D MHD turbulence have many features in com-
mon. In particular both exhibit a direct spectral cascade
of the energy E = Ev + E~ =

z f(v~ + B~)dr and an
inverse cascade of a pure magnetic quantity, the mag-
netic helicity H =

z fA B dr in 3D and the mean

square magnetic potential A =
z f a~ dr in 2D, where a

is the component of the vector potential in the third direc-
tion. It is generally believed that inverse cascades are the
origin of self-organization, i.e., formation of large-scale
coherent structures, for instance the isolated vorticity ed-
dies observed in decaying 2D Navier-Stokes turbulence
result from the inverse energy cascade [5]. The latter
has recently been studied [6], showing that contrary to
the behavior in the direct cascade the statistics of the ve-
locity field increments are Gaussian at all scales. Only
after the self-similarity of the inverse cascade process is
broken due to condensation in the largest possible wave-
length non-Gaussian statistics are generated which are at-
tributed to a revival of intermittency of the small-scale
turbulence. The question arises whether this behavior is
a special property of the 2D Navier-Stokes system, which
obeys a particularly simple equation, or is a more gen-
erally valid feature of inversely cascading systems. We
therefore consider the inverse cascade of A in 2D MHD,
which is a more complex system than 2D Navier-Stokes
but still allows numerical simulations with high spatial
resolution.

When turbulence is excited by injecting A with the
rate eA into some wave-number range around k = kp,
the spectral properties for k & kp are determined by
the inverse cascade of AI, . A simple Kolomogorov-type
dimensional analysis yields (see, e.g., [1])

AP = CAeA k
2/3

where CA is a (possibly not universal) constant. The
spectrum (1) corresponds to an almost flat magnetic

energy spectrum, Ek = k Ak ~ k " . The kinetic energy
spectrum EI, cannot be determined in this way. The usual
way relating Ek and EI, in the direct energy cascade is
provided by the Alfven effect [7], that due to the influence
of the large-scale magnetic field small-scale fluctuations
v, B are tightly coupled forming Alfven waves such
that Ek = Ek. The Alfven effect is, however, expected
to be weak in the inverse cascade process because of
the absence of a significant large-scale field. Direct
numerical simulations of the inverse cascade in 2D MHD
turbulence have previously been performed [8]; however,
the resolution (up to 64 collocation points) used was
too small to identify an inertial range, and the statistical
properties were not addressed. In this Letter we present
a series of simulations of rather high resolution (up to
1024 ). The main points investigated are the spectral
behavior in the inertial range of the inverse cascade,
the dynamics of the cascade process, and the statistical
properties in the self-similar cascade and the condensation
phases.

The 2D incompressible MHD equations are conve-
niently written in terms of a and the stream function P
assuming uniform mass density p = 1:

B,a+v Va=D, + f„ (2)

B,ta+ v Vta —B Vj=D + f, (3)
where the magnetic field is B = Va X i, the velocity
v = Vp X z, the current density j = —V~a, and the vor-
ticity ta = —V~/. D, and D are the magnetic and
kinetic dissipation terms. In order to concentrate dissipa-
tion at small scales we use higher order diffusion opera-
tors, D = —g46~ &a, D = —p46~ ~co, which have been
found in studies of decaying turbulence [3] to allow ef-
ficient energy absorption without perturbing the inertial
range properties. The external forces f„f„areapplied
in a narrow wave-number band Ak around kp, where kp =
100 for 512 resolution and kp = 250 for 1024 resolution,
Ak = 5, and g4 = v4 is chosen such that the residual dis-
sipation for k ( kp is very small. In most cases reported
here we choose white-noise Gaussian random forces. The
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Ak cascade is most clearly observed when the system is
driven only magnetically, f„=0, to which case consid-
eration is restricted here. Equations (2) and (3) are solved
on a square box with periodic boundary conditions using
a pseudospectral method with dealiazing according to the
2/3 rule. The initial state is ak = cuk = 0. Four phases
can be distinguished.

(a) Linear stochastic phase. Linearizing Eqs. (2) and

(3) ak = ak + ak, Pk = @k, ak = g; f,(t;)dt, we can
derive the spectra Ek, Ek in the initial period. Because
of the white-noise property of f, the magnetic energy
E in b, k increases linearily in time, E (r) = et, e =
dEM/dt. Omitting the straightforward, but somewhat
tedious algebra we obtain
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where at, a2 are numerical factors. Hence EI, is flat (the
same behavior is obtained in the Navier-Stokes case [6]),
while Ek ~ ks. Although the system is driven only mag-
netically, the induced spectral kinetic energy is initially
much larger than the magnetic one, Ek &&Ek, but the latter

rapidly catches up and reaches the former at k = k(), which
initiates the nonlinear phase, where both are tied together,

Ek, = Ek, . Rapid growth of Ek, EI, continues, until the
induced spectrum in the dissipation range is high enough
to balance the energy input, at which point the total energy
saturates, staying constant henceforth except in the asymp-
totic condensation phase (d).

(b) Nonlinear cascade phase. The mean square po-
tential A grows linearly in time, which drives the in-

verse cascade process. Figure 1 shows the resulting

spectra of AI„Ek,Ek. Ak exhibits an almost precise
k ' law with CA = 2.6 ~ 0.2 using three simulation runs

with (a) resolution 512 and e„=2.6 && 10 6; (b) 1024,
E//,

= 10 4; (c) 512, e/t = 6 X 10 4. Since Eq. (1) is de-

rived neglecting the Alfven effect, the present results con-
firm that this effect is weak in the inverse cascade. The
magnetic energy spectrum is close to k ", the kinetic
one close to k" . The reduced spectrum Ek = Ek —Ek
is positive and scales approximately as k ' . It is worth

noting that the normalized reduced spectrum El, /Ek ~
k ' is steeper than observed in freely decaying turbulence,
where El, /Ek ~ k "2 due to the Alfven effect as observed
in [3] for the direct cascade. Hence in the present case the

system tolerates larger differences between Ek and Ek in

the inertial range, which is consistent with the absence of
an Alfven effect.

As the inverse cascade proceeds, coherent magnetic
structures increasingly dominate the spatial distribution

a(x, y) as illustrated in Fig. 2(a). These structures are

generated by current filaments of diameter = kp ', which

locally condense out of the stochastic sea of current den-
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FIG. 1. Spectra of Ak, Ek, Fk in the cascade phase, obtained
from a 1024' simulation with pure magnetic driving, f„=0.

sity fluctuations. The cascade dynamics is governed by
the coalescence of such magnetic eddies. Coalescence
is much faster than in decaying MHD turbulence [3],
since the high level of' small-scale fluctuations induces
an anomalous resistivity, allowing fast reconnection. Fig-
ure 3 illustrates this effect by comparing the coalescence
of two eddies of the state given in Fig. 2(a) with the

corresponding two eddy system with the same values of
ri4 = v4 but no small-scale turbulence, d(r) giving the dis-
tance between the current filaments. In the latter case the

reconnection process starting at t = 46 is much slower.
The turbulent reconnection can be modeled using the re-

sults of Refs. [1,9]. Note that because of the attractive
forces between parallel currents magnetic eddies coalesce
more frequently than vorticity eddies in 2D Navier-Stokes
turbulence, the latter primarily circling around each other.
We also note, that the quasisingular magnetic structures
seen in Fig. 2 are rather different from the rounded mag-
netic eddies corresponding to smoothly distributed cur-

rents seen in the inverse Ak cascade in freely decaying
MHD turbulence [3].

As in the case of the inverse energy cascade in 2D
Navier-Stokes turbulence [6], the statistics of the veloc-
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FIG. 4. F6 = (88~)/(BB,')' in the asymptotic condensation
phase.

of current filaments. The reconnection of the associated
magnetic fiux a is a rapid process due to the anomalous
resistivity generated by the high level of small-scale
turbulence. The statistics of 681 and 6vl are Gaussian
throughout. This seems to be a robust general feature
of inversely cascading turbulent systems, which does not
depend on the way of forcing or the self-similarity of the
cascade, which is broken in the condensation at k = 1

without changing the statistics. Only in the asymptotic
condensation phase, when the quasistatic field dominates
over the Auctuating one, non-Gaussian statistics in BBI
arise, which are, however, entirely due to the static field,
while the superimposed turbulence remains Gaussian. A
similar behavior arises in the 2D Navier-Stokes case,
which gives a new interpretation of the numerical results
reported in [6].

dashed curve is the Gaussian F6 = 15, while the upper
dashed curve gives F6 for the static contribution of the
a = 50 state. Hence the non-Gaussian statistics are
generated by the quasisingular structure of the static field
near the filaments of width = ko ', while the superimposed
turbulent fluctuations BBI remain perfectly Gaussian, as
found by eliminating the coherent current filaments by
choosing x = 0. This can be related to a recent result
concerning the equilibrium statistics of the MHD fluctua-
tions about a static field [10]. We have also investigated
the 2D Navier-Stokes case. Here, too, contrary to the
interpretation given in [6], the non-Gaussian statistics in
the condensation phase are only due to the quasistationary
Aows generated by the two antiparallel vorticity filaments,
while the superimposed turbulence remains Gaussian.

In conclusion, we have shown that the inverse cascade
of Ak in 2D MHD turbulence proceeds by coalescence
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