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Quantum-Limited Linewidth of a Bad-Cavity Laser
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We show experimentally that the quantum-limited linewidth of a laser can be smaller than the

conventional Schawlow-Townes limit when the gain bandwidth is smaller than the cavity loss rate.
Data obtained for a HeNe 3.39 p, m laser confirm the theoretical result derived for the linewidth of a
homogeneously broadened laser in the bad-cavity limit. We show how this result can be understood in

terms of the group refractive index.

PACS numbers: 42.55.Px, 42.60.—v

In the 1960s the quantum theory of laser linewidth was
formulated by several authors [1—4]. Progress continues
as theories are being compared [5], the influence of
intensity fluctuations is discussed [6], population and
polarization dynamics are taken into account [7,8], and
unconventional regimes are explored, such as extremely
large outcoupling [9]. The result originally predicted by
Schawlow and Townes [10] is that a homogeneously
broadened single-mode laser tuned to the center of the
gain profile has a quantum-limited linewidth given by
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where 5v is the (FWHM) laser linewidth, I'p =
—(e/2L) ln(R&R2) is the cold-cavity loss rate, with L
the cavity length and R& and R2 the mirror reflectivities,
and P,„t is the laser output power. For gas lasers the
Schawlow-Townes limit is typically in the sub-Hz range
and drowned by technical noise. For semiconductor
lasers, having much higher gain and losses, the quantum-
limited linewidth is typically in the MHz range, thereby
restricting in fact some applications in coherent optical
communication.

The Schawlow-Townes equation (1) has been derived
under the assumption that the angular frequency gain
bandwidth (FWHM), denoted by 2y = 2/T2, is much
larger than the cavity loss rate I'p, i.e., a = I'p/2y « 1.
This is the good-cavity limit. In this Letter we will dis-
cuss the fundamental laser linewidth in the bad cavity-
regime, i.e., when a ~ 1. Note that this regime does not
necessarily correspond with a bad cavity in the sense that
the optical loss per round trip is large. It only means
that the amplitude cavity loss rate 2 I'p is comparable to
or larger than the polarization decay rate y and that the
atomic polarization can thus not be adiabatically elimi-
nated from the laser rate equations.

Our interest in the bad-cavity regime is related to recent
developments in semiconductor microlasers. In these
lasers potentially a large fraction (p) of the spontaneous
emission couples into the lasing mode, leading to the
promise of an extremely small lasing threshold (~ p ')
[11].As shown by Bjork, Heitmann, and Yamamoto [11],
a necessary condition for maximizing P is that a ~ 1.

(
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where the spontaneous-emission factor N, ~
= N2/

(N2 —Nr) measures the degree of inversion (N,~
= 1 for

an ideal four-level laser), N~ and N2 are the populations
of the lower and upper laser levels, and p pp is the de-
tuning of the mode frequency v from the center frequency
vp of the gain profile. Equation (2), which we will call
the bad-cavity expression, shows three extra features as
compared to the Schawlow-Townes equation (1): (i) en-
hancement of the linewidth due to incomplete inversion,
(ii) enhancement on detuning from resonance, and (iii)
the occurrence of a factor [y/(y + 2 I p)]2. The latter

factor equals 1 in the good-cavity limit ( 2
I'p « y),

but decreases dramatically upon entering the bad-cavity
regime; it also appears in the recent theory of Kolobov
et al. [8]. It is the influence of this factor on the laser
linewidth that we have experimentally investigated by
measuring the fundamental linewidth of a 3.39 p,m HeNe
laser as a function of the cold-cavity loss rate, going from
the good-cavity to the bad-cavity regime. We restrict
ourselves to zero detuning (v = vp).

To reach the bad-cavity regime we make the 3.39 p, m
HeNe gas laser short (L = 20 cm). The 10 cm long gain
tube, having a bore of 1 mrn and Brewster windows at the
ends, was filled with a He:Ne = 5: 1 mixture of natural

For a semiconductor laser it is very difficult to realize this
condition due to its large gain bandwidth; a typical value
is a = 0.1 for a cooled A16aAs vertical-cavity microlaser,
operating at an exciton gain line of 2.5 nm width and
having a cavity bandwidth of 0.25 nm [11]. Therefore we
have chosen a gas laser to explore the bad-cavity limit of
the laser linewidth.

Haken and Lax were the first to describe a homoge-
neously broadened single-mode laser in the bad-cavity
limit [2,3]. By taking into account the full polariza-
tion dynamics they found a modified form of the original
Schawlow-Townes equation [2,3],

hv I p 2$' (v —vp)Av= Nsp 1+
14m P,„,
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isotope abundances at a pressure of 320 Pa. At this pres-
sure the FWHM gain bandwidth of the laser medium is
y/m = 500 MHz, separable in 300 MHz Doppler width
and 300 MHz pressure broadening [12]. We checked this
value by measuring the frequency-dependent gain of the
amplifier tube with a second, tunable HeNe laser, serving
as probe laser and also by measuring the mode pulling as
discussed below. The laser mirrors had a 30 cm radius
of curvature and reflectivities R~ and R2. The high un-

saturated gain (=135 dB/m) allows laser oscillation with
reflectivities as low as Ri = R2 = 8%. By using differ-
ent sets of mirror reflectivities, ranging from 8% to 98%,
the cavity loss rate I p could be varied such that 0.2 &
a ( 1.4.

We note that the linewidth of 3.39 p, m HeNe lasers
has been investigated before in a classic experiment by
Manes and Siegman [13]. However, they did not enter
the bad-cavity regime; we calculate their largest value of
a as 0.53. Small deviations from the Schawlow-Townes
prediction were observed, but not attributed to possible
bad-cavity effects.

Single-longitudinal-mode operation was ensured by the

cavity free spectral range (750 MHz) being larger than the

gain bandwidth (500 MHz). A Fabry-Perot was used to
check that the laser oscillated in a single longitudinal and

transverse mode. The linewidth was measured by means
of self-heterodyne detection [14]. For this purpose the

laser beam is split in a Mach-Zehnder interferometer and

the optical frequency in one path is shifted by 40 MHz
with an acousto-optic modulator. After recombination the

resulting intensity beat, at a frequency around 40 MHz,
is spectrally analyzed with an rf spectrum analyzer. By
using a folded optical delay line we set the interferometer

path length difference AL to 200 m.
A typical self-heterodyne spectrum is shown in Fig. 1

for a laser having R~ = R2 = 8% mirrors operating at

P,„, = 280 p, W. It consists of a sharp "coherent" peak
and "incoherent" wings, which show an oscillatory struc-

ture with a period c/AL [14]. The only available fitting

parameter is the laser linewidth, which is found to be
80 ~ 6 Hz (FWHM) for the example in Fig. 1. The pro-
nounced spectral signature of the self-heterodyne spec-
trum and the convincing fit in Fig. 1 show that we really
measure the fundamental laser linewidth. Noise of tech-
nical origin is usually relatively slow and will therefore

mainly deform the sharp coherent peak at 40 MHz. The

possibility to separate technical noise from the "white"

phase noise caused by spontaneous emission is a clear
advantage of self-heterodyne detection over, e.g. , a mea-

surement of the visibility [15].
The linewidth at zero detuning was measured as a

function of laser output power, which was varied by
changing the discharge current. For a mirror corn-

bination of R) = R2 = 8% the results are shown in

Fig. 2, where each point represents a measured self-
heterodyne spectrum. The data show the expected in-
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FIG. 1. Self-heterodyne spectrum for a laser having Rl =
R2 = 8% mirrors operating at P,„, = 280@,%. The coherent
peak goes up to 9000. The solid curve is a theoretical At giving
a linewidth of 80 Hz.

verse power behavior [see Eqs. (1) and (2)], which in-

dicates that the measured linewidths are quantum lirn-

ited. We ascribe the small power-independent contri-

bution, observable as the intersection with the vertical
axis at 5 vp = 11 + 7 Hz, to a power dependence of
N, ~, i.e., N, ~

= N, ~(P) [16]. The slope in Fig. 2 de-

fines a "linewidth-power product" (b, v —5 po) P of 18 +.

2 Hz mW.
The measurements were repeated for various mirror

combinations, i.e., various cavity loss rates I o (see
caption of Fig. 3). In Fig. 3 we have plotted the thus

determined linewidth-power products as a function of the

cavity loss rate squared, I p. The dashed line shows the

conventional (i.e., good-cavity) Schawlow-Townes result

[Eq. (1)]. The solid curve shows the bad-cavity result

[Eq. (2)] for zero detuning, where we have assumed

that N, ~
=—1, used y/m = 500 MHz, and calculated

cavity loss rates via lo = —(c/2L) ln(RiRz). Clearly,
the fundamental linewidth of a bad-cavity laser is much

smaller (up to a factor of 5) than expected from the good-
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FIG. 2. Linewidth versus laser output power for Rl = R2 =
8%. Points are experimental data. The line illustrates the
inverse power dependence.
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cavity Schawlow-Townes expression [Eq. (1)], whereas
the bad-cavity expression [Eq. (2)] fits our experimental
data quite well. Note that apart from N p there are no
adjustable parameters. The dashed-dotted curve gives an
even better fit of the bad-cavity expression to our data and
was calculated for N, ~ (0) = 1.3, a more realistic value
that was measured in an independent experiment [16]. To
our knowledge this is the first experimental test of the
linewidth theory developed for bad-cavity lasers.

The factor [y/(y + z I'o)]z in the bad-cavity expres-
sion reduces the linewidth when the lifetime of the po-
larization is comparable to or larger than the lifetime of
a photon in the cavity. It reflects the memory effect of
the polarization that effectively slows down the phase dif-
fusion process [8]. Below we will show that an alterna-
tive physical explanation for this behavior can be given in
terms of the group refractive index ng, ———n + cu(dn/des),
which, in the bad-cavity regime, can deviate significantly
from the (phase) refractive index n

In a semiclassical treatment the evolution of the intra-
cavity field can be described with the wave equation

BzE(r, t) 1 BzE(r, t)
~z c Bt

( B2 [P,„,(r, t) + P,p (r, t)j )
3

c2eo ( Btz )
where P;„d is the induced polarization associated with
the gain. and dispersion of the laser medium and P p is
the fluctuating polarization associated with spontaneous
emission. The crucial point is that due to the finite
width of the laser transition, P;,d(r, t) is not simply
proportional to E(r, t): There is a memory effect and one
has to take into account the frequency dependence of the
susceptibility X(co) [17]. Introducing the slowly varying
amplitudes E(r, t) and P(r, t) one finds

BzE(r, t) cot'-
+ (1+ X), E(r, t)

BZ c
1 dX~ BE(r, t)

+2lQPI 1 + J' + COI

l 2 de�) Bt

P, (r, t), (4)
C 6p

where coI is the optical laser frequency.
One way to solve Eq. (4) is to separate the spatial

and time dependence by the introduction of laser modes
[18]. Another, presently more instructive, approach is the
separation of the intracavity field into a left- and right-
going traveling wave [9]. At zero detuning this results in

BE+ (z, t) ttgr BE+ (z, t)+ ~ gE+ z, t
BZ c Bt

P,p(z, t), (5)2cEpn

where E+(z, t) is the right-going wave, where the real
and imaginary parts of g are rewritten in the usual way
in terms of the refractive index n and the intensity gain
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FIG. 3. Linewidth-power product at zero detuning as a func-
tion of I'o and a —= I'/2y. The points are measured data, cor-
responding with different combinations of mirrors with reflec-
tivities R = 8%, 30%, 70%, 90%, and 98%. The dashed line is
based on Eq. 1, whereas the solid and dash-dotted curves are
based on Eq. 2 with N, ~

= 1 and N, ~(0) = 1.3, respectively.

=1+ r,
2y'

where we have used the lasing threshold condition g =
I o/c. Note that the group refractive index ng, can deviate
significantly from 1 due to the narrow linewidth of an
atomic transition. We thus find that the gain-induced
anomalous dispersion leads to a reduction of the effective
cavity loss rate and to the appearance of the factor
[y/(y + 2 I o)] in the equation for the laser linewidth.
In the bad-cavity limit, where I p )& y, the dressed
cavity loss rate even becomes independent of I p, because
I'o/ng, = I oy/(y + 2 I'o) = 2y. In this limit the laser
linewidth thus becomes independent of the cavity loss rate

per unit length g, and where dX/dred is rewritten in terms
of ng, .

Equation (5) resembles the evolution equation for a
good-cavity laser, apart from the factor ng, in front of the
time derivative and the factor 1/n in front of P,~. The
factor 1jn shows that the dielectric surroundings lead to a
reduction of the spontaneous emission noise [19]. For the
considered gas lasers this has no consequences as n = 1.
The factor ng, shows that the disturbance produced by
spontaneous emission propagates with the group velocity
vs,

—= c/ns, . The factor ng„can be removed from Eq. (5)
by a simple time transformation, making the evolution of
the intracavity field a factor ng, slower. By replacing, in
the original Schawlow-Townes equation, the cold-cavity
loss rate I'o by a "dressed" loss rate I'o/ns, this equation
thus becomes also valid in the general case. For a laser
cavity that is only partially filled with active medium, as
is the case for our gas laser, n and ng, are effective values,
being spatial averages over the cavity length.

For a homogeneously broadened medium ( with n = 1)
one can easily show that at zero detuning [20],

1

ngr
y+ zI'p

(6)
y
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but instead contains the much smaller gain bandwidth, as
one finds 5v = (y2hv/m. P,„,) N, ~.

To check Eq. (6), we have measured the frequency
pulling, i.e., the change of the laser frequency in response
to a change in cavity length, for various mirror combi-
nations. %ith high-reflecting mirrors the laser frequency
followed the changes in cavity length almost perfectly and
the determined ng, was close to 1. With low-reflecting
mirrors the laser frequency experienced a strong pulling
from the gain medium and the determined ng, was much
larger. The results confirm Eq. (6) with 7/m. = 500 MHz.

In order to reach the bad-cavity regime we have
used low refiectivity mirrors (R ~ 8%). The resulting
nonuniform longitudinal intensity distribution in the cav-
ity gives rise to a multiplicative correction factor to the
linewidth, the so-called longitudinal Peterman factor K ~
1 [18]. For our mirror combinations we calculate K ~ 1.5
if saturation is neglected. Since saturation smoothens
the nonuniformity and thus brings K even closer to 1,
we deem this effect to be hardly important for our
experiment.

As mentioned above, Bjork, Heitmann, and Yamamoto

[11] have shown that a thresholdless microcavity laser
will necessarily be a bad-cavity laser. They estimate the
linewidth of such a laser from the original Schawlow-
Townes expression, without accounting for the gain-
induced anomalous dispersion contribution to ns, Since, .
however, the unpumped semiconductor has already a

large "intrinsic" ns, (=4.3 for GaAs [21]), the bad-cavity
consequences for the laser linewidth are less dramatic for
a semiconductor (micro)laser than for a gas laser.

In conclusion, we have experimentally confirmed the

prediction [2, 3, 8] that in the bad-cavity regime the
quantum-limited laser linewidth becomes much smaller
than the value given by the Schawlow-Townes expression.
This result can be understood either in terms of a memory
effect of the polarization or in terms of a reduction of the

group velocity; interpretations that are two sides of the

same coin. At zero detuning the bad-cavity expression
can be obtained from the conventional Schawlow-Townes
expression by making use of the dressed cavity loss rate

r, /ns, instead of the cold-cavity loss rate I o.
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