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Reconstruction of Dynamical Systems from Interspike Intervals
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Attractor reconstruction from interspike interval (ISI) data is described, in rough analogy with
Takens theorem for attractor reconstruction kom time series. Assuming a generic integrate-and-fire
model coupling the dynamical system to the spike train, there is a one-to-one correspondence between
the system states and interspike interval vectors of sufficiently large dimension. The correspondence
has an important implication: interspike intervals can be forecast from past history. We show that
deterministically driven ISI series can be distinguished from stochastically driven ISI series on the
basis of prediction error.

PACS numbers: 05.45.+b

It is a widely known fact that states of finite-
dimensional dynamical systems correspond in a one-to-
one manner with delay-coordinate vectors, which are vec-
tors of time series measurements of a generic system ob-
servable. In the case of low-dimensional chaotic systems,
which follow simple evolution laws but produce irregu-
lar dynamics, this is a fact of great importance. System
analysis of this type is suggested in [1) and an embed-
ding theorem due to Takens [2] (later extended in [3])
established its validity.

The fact that the current system state can be identi-
fied using a vector of time series measurements leads to a
number of applications, owing to the fact that analysis of
the topology and sometimes the geometry of the chaotic
attractor underlying the time series can be performed in
the proxy state space consisting of the delay-coordinate
vectors. Applications include noise filtering [4] and pre-
diction [5,6] of chaotic time series, and control of unstable
periodic orbits solely from a time series record [7].

For some time-varying systems, amplitude measure-
ments of an appropriate observable are not possible or
desirable, but a series of pulses, or spikes, emitted at
regular or irregular time intervals, can be observed. For
example, it may be difficult to measure the time trace
of the interior electrostatic potentials of a biological cell,
but feasible to record its firing times. In other cases, the
firing times may carry more information than the ampli-
tudes. A process in which the dynamical information is
carried by a series of event timings is called a poin, t pro-
cess. It is common for point processes to exhibit complex
aperiodic behavior, and as a result statistical modeling
of point processes is a highly developed subject [8]. The
main question of this paper is the following: If a point
process is the manifestation of an underlying determin-
istic system, can the states of the deterministic system
be identified from the information provided by the point
process? This question has been considered previously in
[9,10].

In particular, neurobiological systems are often marked
by measurable pulses corresponding to a cell reaching a
threshold potential, vrhich triggers rapid depolarization,

followed by repolarization, vrhich restarts the cycle. The
times of these discrete pulses can be recorded. These
types of data differ from a time series of an observable
measured at regular time intervals. Many hypotheses and
models for the description of the time variability of these
pulses have been proposed [11].

For concreteness, we make a simple hypothesis con-
necting an underlying continuous dynamical system to
the point process. The time series from the dynamical
system is integrated with respect to time; when it reaches
a preset threshold, a spike is generated, after which the
integration is restarted. This integrate-and-fire model
is chosen for its simplicity and potential wide applica-
bility. Cell depolarization models for pulses may oper-
ate in this general manner. Neural cells in particular
have multiple inputs, and a priori are part of a multidi-
mensional dynamical system. However, in the presence
of self-organizing or synchronizing infiuences, the input
may effectively have fewer degrees of freedom, although
appearing irregular in time. Therefore in our simula
tions we hypothesize that the input to be integrated is a
low-dimensional chaotic attractor. We use the Lorenz at-
tractor and the Roasler attractor as simple representative
examples.

Our goal is to develop a model which is as generic as
possible, in order to focus on the linkage between con-
tinuous dynamics and the interspike intervals (ISI's) pro-
duced by them. In particular, we are not trying to model
the detailed mechanism of any single system.

Let S(t) denote the signal produced by a time-varying
observable of a finite-dimensional dynamical system. As-
sume that the trajectories of the dynamical system are
asymptotic to a compact attractor X. Let e be a pos-
itive number which represents the firing threshold. Af-
ter fixing a starting time To, a series of "firing times"
Tg ( Tg ( T3 & .-. can be recursively defined by the
equation

From the firing times T;, the interspike intervals can be
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defined as t, = T, —T, i. Figure 1 shows a time trace of
the x coordinate of the Lorenz attractor [12], governed by
the equations x = cr(y x—), y = px y—x—z, z = —Pz+xy,
where the parameters are set at the standard values o. =
10, p = 28, p = 8/3. The signal S(t) = [x(t) +2]z is used
with threshold 0 = 60 in Eq. (1) to generate the spike
train shown.

Note that the mean of the signal S(t) must be positive
to create interspike intervals. %e use a variety of choices
for S(t) in this study. It turns out that if the interspike
intervals are finite, and under certain genericity condi-
tions on the underlying dynamics, signal and threshold,
the series $t, ) of ISI's can be used to reconstruct the
attractor X. In other words, there is a one-to-one corre-
spondence between rn-tuples of ISI's and attractor states,
which associates each vector (t, , t, i, . . . , t, ~+i) of ISI's
with the corresponding point x(T,) on the attractor. In
analogy with the original Takens's theorem [2] and its
generalization [3], the condition rn ) 2Dp is sufficient,
where Dp is the box-counting dimension of the attractor
X. (See [13] for a precise statement of the theorem hy-
potheses and proof. ) As with Takens's theorem, smaller
m may be sufficient in particular cases.

Figure 2 shows a phase portrait reconstructed from
interspike intervals. The Rossler equations [14] are x =
—(y + z), y = x+ ay, z = bx —cz + xz, where the
parameters are set at the standard values a = 0.36, b =
0.4, c = 4.5. Interspike intervals are produced as in (1),
where S(t) = x(t) + 40 and e = 20. The time intervals
t, are recorded, and 150 of the vectors (t, , t, i, t, z) are
plotted in Fig. 2(a), connected by straight lines. Figure
2(b) is a plot of 10000 ISI vectors produced by Eq. (1).

One practical consequence of such a theorem is that
the ISI vectors (t, , . . . , t, +i) can be used to reconstruct
the attractor X sufficiently to make measurements of dy-
namical invariants of X possible, and to do short-term
prediction on the series (t,). Thus the possibility exists

of predicting future interspike intervals from past history,
which has practical applications. To explain the mean-
ing of short term, it is instructive to recall the time series
case. For chaotic time series, the length of time horizon
for which prediction is effective depends on the separa-
tion time of nearby trajectories, and so inversely on the
largest Lyapunov exponent. For ISI series, the horizon
depends both on the Lyapunov exponents of the under-
lying process and on the threshold O. As 8 increases,
the predictability decreases.

We will apply a simple version of a nearest-neighbor
prediction algorithm (see, for example, [15]). More so-
phisticated nonlinear prediction algorithms exist; see [6]
for examples. The simple version used here is sufficient to
diagnose determinism in the series and makes our main
results easy to reproduce. In order to quantify the pre-
dictability of the series of ISI's we will use the concept of
surrogate data [16] to produce statistical controls.

The prediction algorithm works as follows. Given an
ISI vector Vp

——(t,„.. . , t,, ~+i), the IFO of other recon-
structed vectors Vy that are nearest to Vp are collected.
(It is important to omit vectors Vi, which are close to Vp

in time; otherwise prediction degenerates to an in-sample
interpolation fft. ) The values of the ISI for some num-
ber h of steps into the future are averaged for all k to
make a prediction. That is, the average p,, = (t,„i~)~ is
used to approximate the future interval t,,+h, . The dif-
ference p —t,,+g is the h-step prediction error at step
i p. We could instead use the series mean m to predict at
each step; this h-step prediction error is m —t,,+h. The
ratio of the root mean square errors of the two possibili-
ties (the nonlinear prediction algorithm and the constant
prediction of the mean) gives the normalized prediction
error

2 1i'2

NPE ((P&o &0+h ) ) (2)
((rn —t, +t,)z)'iz '

where the averages are taken over the entire series. The
normalized prediction error is a measure of the (out-of-

sample) predictibility of the ISI series. A value of NPE
less than 1 means that there is linear or nonlinear pre-

dictability in the series beyond the baseline prediction of
the series mean.

Our goal in predicting ISI's is to verify that the non-

linear deterministic structure of the dynamics that pro-

duced the intervals is preserved in the ISI's. Linear au-
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FIG. 1. The upper trace x(t) is the x coordinate of the
Lorenz attractor graphed as a function of time. The lower
trace shows the times at which spikes are generated according
to Eq. (1), with S(t) = [x(t) + 2] and 8 = 60.

FIG. 2. Reconstructed phase portrait for the Rossler at-
tractor using ISI's. (a) 150 ISI's connected by line segments.

(b) 10000 ISI's shown.
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FIG. 3. (a) An ISI series generated by the Lorenz equa-

tions, with same parameters as in Fig. 1. (b) A GS surrogate.

tocorrelation in the time series, present for example in
correlated noise, can cause NPE to be less than 1. In
order to control for this effect, we calculate the NPE for
the original series of ISI's as well as for stochastic series of
the same length, called surrogate data, which share the
same linear autocorrelation and other properties with the
original series.

We use two types of surrogate data in our analysis.
The first, called a random phase (RP) surrogate, is a se-
ries with the same power spectrum as the original series,
but is the realization of a stochastic process. (See [16]
for further details. ) The autocorrelation of the original
series is preserved in the new surrogate series, while the
nonlinear deterministic structure is eliminated. If the
predictability of the original can be shown to be statisti-
cally different from the predictability of such surrogates,
the null hypothesis that the original series was produced
by a Gaussian random process can be rejected, which is
evidence that the nonlinear structure of the underlying
dynamical system is present in the interspike intervals.
The second type of surrogate, called a Gaussian-scaled
shufHe (GS) surrogate [16], is a random shufHe of the
original series subject to retaining much of the serial cor-
relation. The GS surrogate corresponds to the null hy-
pothesis that the series is a monotonically scaled version
of amplitudes produced by a Gaussian random process.
Figure 3 shows a section of an ISI series together with a
section of a GS surrogate.

The result of applying the nonlinear prediction algo-
rithm to interspike intervals from the Lorenz attractor
with S(t) = [x(t) + 2]z is shown in Fig. 4. For these cal-
culations we fixed the embedding dimension rn = 3, and
predicted one step ahead (h = 1). One dozen ISI series,
each of length 1024, were generated with varying thresh-
old O. For each of the 12 series, two surrogate series
of each of the two types were generated. The NPE was
computed for each of the 48 series and plotted in Fig. 4.
In each of the 12 cases there is a statistically significant
difference between the original series and its surrogates.
The conclusion is that there is predictability in the ISI
series caused by the underlying deterministic dynamics.
(More precisely, there is predictabihty not explained by
any of the null hypotheses controlled for by the surro-
gate data. ) As the threshold 8 increases, predictability
of the series decreases, and completely disappears near

8 = 100.
In Fig. 5(a), the effect of lengthening the prediction

horizon is investigated. A different driving signal is used,
S(t) = (x+y+z)z, where z, y, z are the coordinates of the
Lorenz equations. The threshold 8 = 200 is fixed. The
resulting ISI series has nontrivial linear autocorrelation,
which has the efFect that NPE ( 1 for the surrogates at
short prediction horizons. Figure 5(a) shows that there is
several-step-ahead predictability in the original ISI series.

A number of tests for deterministic dynamics which
can be applied to time series data have been proposed
recently [17,18], in addition to calculation of correlation
dimension [19].Nonlinear prediction error is another, rel-
atively powerful distinguishing statistic for this purpose.
Now we ask the parallel question for ISI data: Can the
deterministic origin of an ISI series be ascertained from
the series alone? The following numerical experiment
was carried out. Two series of ISI's were generated by
Eq. (1). The first is deterministically driven, meaning
that S(t) is a signal froin the deterministic system used
to make Fig. 5(a). The second is stochastically driven:
Specifically, S(t) is a realization of a stochastic process
which has power spectrum identical to that of the deter-
ministic signal. Figure 5(b) shows the results of the pre-
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FIG. 5. (a) Diamonds denote NPE as a function of pre-
diction horizon for ISI's created by the Lorenz attractor with
S(t) = (x + y + z), 8 = 200. NPE of surrogates denoted
as in Fig. 4. (b) Same as (a), but with the signal x+ y+ z
replaced by noise with identical power spectrum.
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FIG. 4. Normalized one-step ahead prediction error
for several ISI series created using the Lorenz attractor,
S(t) = (x + 2), and thresholds 8 varying on the horizontal
axis. Diamonds connected by line segments denote the NPE
of the 12 original ISI series; NPE of the surrogates denoted
by square (RP) and triangle (GS).
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FIG. 6. Sample probability density functions (histograms)
of ISI series. (a) Deterministic series from Fig. 5(a). (b)
Stochastic series from Fig. 5(b). (c) Deterministic series, from
Lorenz with S(t) = z snd 8 = 50. (d) Series recorded from
experiment.

diction algorithm applied to the stochastically driven ISI
series. The deterministic structure present in Fig. 5(a)
has been clearly destroyed in 5(b). Figures 6(a) and 6(b)
compare the histograms of ISI's of the deterministically
and stochastically generated processes. Note in partic-
ular that the second peak of the bimodal histogram of
the deterministically driven system is eliminated in the
stochastic case.

A final question we raise for further investigation is to
what extent the ISI's we have synthesized using generic
chaotic attractors resemble ISI's from experimental data.
Figure 6(c) shows sample probability distributions of
ISI's for the Lorenz and integrate-and-fire model, with
S(t) = xz and 0 = 50. Figure 6(d) shows a prob-
ability distribution of ISI's from an experiment which
recorded spontaneous firing in the CA3 region of an in
Uitro rat hippocampal slice in a high concentration potas-
sium medium. The data from this experiment are ana-
lyzed in [20].
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