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Scenario for a Quantum Phase Slip in SuperHuid 4He
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Slips of the superfluid wave-function phase occur when the flow velocity through an aperture
exceeds a critical threshold v, . We propose a phase slip mechanism in which a microscopic vortex
half ring is nucleated at the wall of the aperture. Its subsequent trajectory is described. The
properties of the vortex close to the wall are inferred from the Gross-Pitaevskii equation and yield,
at T ~ 0.1 K, a vortex radius at nucleation of 14 A. and a critical velocity of 21 m/s, in agreement
with experiment.
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At absolute zero, superfluid 4He behaves as an inviscid
one-component fluid which can sustain vortices quantized
in units of the quantum of circulation rc4. The existence
of these vortices was postulated by Onsager, and inde-

pendently by Feynman [1],who also suggested that they
could account for the phenomenon of critical velocity in

superfluid flows. These ideas were carried out further

by Anderson [2], who introduced the concept of slippage
of the phase of the quantum wave function: vortices are
viewed as singularities in the flow field about which the
quantum phase turns by 2m and which move about, ex-
changing energy with the potential fiow as they grow or
shrink. Direct evidence for these properties is provided

by phase slippage experiments [3—5] in which discrete dis-

sipation events in the flow of 4He through a microscopic
aperture are interpreted as slips of the quantum phase
difFerence across the aperture by 2m.

More recent experiments [6—8] have confirmed the early
findings and have revealed a strong temperature depen-
dence of the velocity threshold for phase slips, v„go-
ing approximately as (1 —T/To) with Tp 2.45 K, and
reaching a plateau below 0.15 K [8,9]. This tempera-
ture dependence has been interpreted as resulting from
thermal and quantum nucleation of nanometer size vor-
tices on the walls of the aperture. This interpretation
is further borne out by a detailed study of the vortex
nucleation rate which stems from the statistical proper-
ties of v, [8,10]. A last but essential piece of information
has been provided recently by the study of the effect of
minute concentrations of He impurities on v, [11].It is

estimated that, in these experiments, the local superfiow
velocity u, at the vortex nucleation site reaches values of
the order of 22 m/s at low temperature. In this Letter,
we Grst address the problem of the properties of quan-
tum vortices in the proximity of walls with the aim of
accounting for such a value of the velocity and for its
temperature dependence. We then describe a plausible
scenario for 2m phase slips in which the vortices are nu-

cleated very close to the walls and propagate across the

aperture along well defined trajectories leading to repro-
ducible discrete dissipation events.

A simple model of quantized vortices is provided by
the Gross-Pitaevskii (GP) equation [12]. This equation,
although it offers only a coarse description of super-
fluid 4He, has been used in many discussions of quan-
tized vortex formation and motion (see, e.g. , [13—16]).
We need further knowledge on the properties of vortices
close to walls, which we obtain by considering a straight
vortex filament standing perpendicularly on a flat inert
boundary. This problem possesses axial symmetry and
we look for a solution to the GP equation of the form

4o ——e'& f(r, z) with Vy = 1/r. The amplitude of the
wave function f satisfies the following equation:
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The same reduced units as GP are used, namely, r and
z are in units of the GP core parameter ao and fz is in
units of p, /m, the bulk superfluid number density, i.e. ,

f tends to 1 far from the wall and the vortex core. The
part Eof the thermodynamic potential density which de-

pends on the superfluid order parameter reads (in units of
the condensation energy density

& p, c*~, the GP "sound"

velocity being c* = rc4/27rv 2ao [17]):

(2)

With no vortex present, the wave-function amplitude

f heals as tanh(z/v 2). In the presence of the vortex, we

have solved Eq. (1) by a Gauss-Seidel iteration scheme
under the condition that f be zero at the wall (z = 0)
and on the vortex core (r = 0), and 1 far away. If we

compute the difFerence in the thermodynamic potential
densities integrated over r in a layer 6z at a height z

with and without vortex, we find the line energy bZo/bz
of the vortex at height z. This quantity varies, for large
r, as tanh (z/v2) lnr/ao+Lo. The quantity la, plotted
in Fig. 1, represents the "core" energy and tends to the
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on the wall, the nucleation site, is now treated in the
same fashion as in Ref. [8] with the following important
modification: the vortex properties close to the wall are
now derived from the above solution to the GP equation
instead of being assumed classical with an ad A, oc cut-
oK close to the wall. We assume as in our earlier work

[8] and following a number of authors [15,22,23], that
the nucleated vortex appears over a flat or nearly flat
wall in the approximate shape of a half ring extending
perpendicularly from the wall. When placed in a local
velocity field u„ the vortex "free" energy is given in terms
of its energy Es and its impulse Po at rest by

Ev = Eo —Po (3)
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FIG. 1. Critical velocity in units of c* vs temperature, cal-
culated for the wall nucleation of a half-ring vortex whose

energy Lo per unit length, in units of p, e4z/4m, and impulse,
normalized to P~ = mp, tc4(zoo) /2, are computed from the
Gross-Pitaevskii equation and are shown in the insets vs z,
the distance from the wall in units of ao. The integration
over r which yields Lo is cut ofF at r = 20. The plain curve
includes the efFect of quantum tunneling [8].

GP value (0.38) away from the wall. At small z, it be-
comes negative and large. As f behaves asymptotically
at large r as (1—r 2) ~ tanh([zi (1—r z)]~z), Ls diverges
logarithmically with r as z -+ 0.

This negative line energy arises for the following rea-
son. From Eq. (2), it is seen that, close to the wall where

f « 1, the potential density is dominated by (V'f)2.
Close to the foot of the vortex on the wall, both the
wave-function amplitude and its gradient are depressed
with respect to the hyperbolic tangent behavior. Hence
the energy is reduced with respect to the vortex-free case,
resulting in a negative line energy for the vortex: a vor-
tex line very close to the wall costs no energy to form.
Hence, we are led to conjecture the existence, even for
small or vanishing local flow fields u„of a vorticity layer
at the wall extending over a thickness of 3ao, as can
be seen by integrating bEO/bz.

Whether this vorticity layer manifests itself otherwise
than on the nucleation of vortices is unclear. Core param-
eters of vortices in films have been found to be ~ 10—20
A [18], values to be contrasted with those in the bulk,

1 A [19]. Surface tension measurements lead to ac 5
A to 9 A at low temperature [20], a value larger than the
superfluid healing length 2—3 A. [21]. Wall phenomena
in superfluid He do not seem to be well described in
terms of a single healing length. In the solution to the
GP equation discussed above, the "efFective" core radius
increases as z ~ 0.

The vortex nucleation process itself, i.e., the escape
of vortices from this layer at some well defined location

assuming that the vortex self-velocity opposes the flow

and effectively decreases the energy. The impulse of the
half ring is expressed by [15,24]

Po = — ps&4 (4)

The integral is taken over the flat surface spanned by
the half ring and limited by the wall. Its outcome, as a
function of z (=R), is shown in Fig. 1.

The half-ring energy Es is half that of the full

ring which, in the bulk, is expressed by 4p, m4zR

x jlog(R/as) + L p), the core energy Ls being very nearly
equal to 0.38, namely, the same value as for straight fil-

aments in the bulk. This near equality also holds for a
half ring of large radius as the wall afFects only two short
and nearly straight portions close to its feet. In the fol-

lowing, we shall neglect for small radii the self-influence
of the ring on its core energy which we shall write as n.

times the integral of Ls from 0 to R = z [25].
The vortex free energy E„can then be computed for

various values of u, . The energy barrier is taken as the
difFerence between the maximum value of E„and the top
of the energy band of the vortex boundary layer (namely,
the zero for energies). The value of the applied flow field
velocity necessary to overcome the energy barrier in the
presence of thermal fluctuations at temperature T is com-
puted as in Refs. [5] and [8]. The outcome of the calcula-
tion with an efFective core radius of 4.7 A is given in Fig.
1. At the quantum crossover temperature T~ = 0.15 K,
the nucleated vortex has a radius of 14 A and a self-

velocity of 21 m/sec. This result reproduces both the
T dependence observed experimentally [4,6—11] and the
measured value of the local critical velocity u, [11]with
the same value of efFective core radius. Furthermore, this
value turns out to be close to the vortex layer thickness
estimated above and which fixes the length scale relevant
to vortices close to walls.

Once nucleated, the vortex survives in the applied flow
field and flows away with the fluid particles, as required
by the Kelvin-Helmholtz theorem. It can disappear only
by a fluctuation process inverse of that of its nucleation.
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Vortex trajectories by ori6ces have been the object of
many studies [26] but it is only very recently that the
3D fluid-dynamical problem of half-ring vortices in the
proximity of an aperture has been addressed [27]. We
shall here gain some insight into the typical trajectories in
such a situation with the help of two analytical examples.

First, we consider the case of a half-ring vortex nucle-
ated at T = 0 (i.e. , we neglect normal fluid) in the close
vicinity of a pointlike aperture in an in6nite plane, the
axis of the half ring going through the aperture. The
streamlines of the applied flow are straight lines fanning
out from the aperture. The corresponding velocity varies
as the inverse of the square of the distance ( from the
source, J/27rp, (, J being the mass flux. Each point of
the half-ring vortex, whose self-velocity varies as the in-

verse of its radius R (to the neglect of small logarithmic
terms), moves in a fixed plane containing the axis of sym-
metry [28]. At first after nucleation, the vortex is pushed
along the flow away from the nucleation site, but since
its self-velocity decreases only as R i while that of the
potential flow varies as ( z, the direction of motion is
reversed after some distance: as pictured in Fig. 2, the
half ring comes back toward the aperture, flies over it,
and away from it with a steady motion towards infinity.
Its final size is such that the total line energy is exactly
b,E = v4 J, as required by the cut-flux theorem [29].

If the size d of the aperture is finite instead of being
infinitely small, trajectories such as the ones depicted in
Fig. 2 are possible only under the condition that the ra-
dius of the half ring be greater than d/2 when it caps over
the aperture (i.e. , at the point at which it has cut half
of the streamlines and where its energy is z4J/2). When
expressed in terms of the critical velocity through the
aperture, v, = 4J/7rp, d~, such a condition reads (with
d)) ao)

v, & —ln

Equation (5) expresses Feynman's criterion [1,5] for the
critical velocity through orifices of size d and appears here
as a geometrical constraint on the half-ring 6nal size.

To illustrate further the possible trajectories of a vor-
tex over an aperture, we consider, as our second case
example, a straight vortex Glarnent moving over an in-

6nitely long slit, the filament axis remaining parallel to
the slit. This simple two-dimensional (2D) situation can
be solved by conformal mapping [30] and the results are
shown in Fig. 3. Two cases (and two only) are seen to
occur, according to the initial conditions: (1) either the
flux is large enough to push the vortex away (from the
wall and its image), across the slit and to the left of the
figure, (2) or it is not, and the filament turns about the
slit edge and creeps along the plate to the right of the

figure.

This typical asymptotic behavior of the vortex trajec-
tory also holds in more general 3D flows: the vortex gains
energy when its self-velocity combines with that of a di-

vergent flow in such a way that it moves away from its
image (in 2D and 3D) and grows (in 3D); in the opposite
case, it loses energy, In the latter situation, it shrinks
back to a very small size, or very close to its image, and
simply amounts to a large scale fluctuation in the flow.
In the former situation, it ends up a large distance from
the aperture having cut all the streamlines of the applied
flow field and having collected an energy AF = v4J,
in accordance with the ac Josephson relation [3], Ulti-
mately, this vortex will dissipate its energy by radiating
phonons when its flow field suffers distortion on obsta-
cles [16]. Thus, the scenario for a 27r phase slip that we

propose here consists, as a first step, of the thermal or
quantum escape of a half ring out of the vorticity layer

FIG. 2. Three-dimensional plot of the half-ring vortex at
various times after nucleation at the point source. The vortex
leaves the picture to the back in the upper left direction and
moves to far-away distances while changing little in radius.

FIG. 3. Vortex trajectories over a two-dimensional slit, rep-
resented by the heavy lines. The vortex is assumed to be cre-
ated at some initial distance from the wall, above it and to
the right of the 6gure. Arrows mark the direction of evolu-

tion. The trajectory with a cusp separates the two types of
vortex behavior discussed in the text. For this picture, the
mean (upward) applied flow velocity is 0.2&4/d, d being the
slit width.
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at a nucleation site on the wall, its subsequent trajectory
then being such that it caps over the aperture, cuts all

the potential flow lines, and carries away a reproducible
lump of energy.
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Pomeau, E. Sonin, G. Volovik, and G. Williams for fruit-
ful discussions and correspondence, and more particu-
larly to K. Schwarz for having undertaken the three-
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