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A syxnrnetric representation of the three-body Coulomb continuum wave function as a product
of three two-body Coulomb wave functions is modified to allow for three-body sects whereby the
Sommerfeld parameter describing the strength of interaction of any two particles is affected by the
presence of the third particle. This approach gives excellent agreement with near-threshold absolute

(e, 2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar
geometry is reproduced for the first time.

PACS numbers: 34.10.+x, 25.10.+s, 34.80.Dp

The problem of the motion of three Coulomb interact-
ing particles at energies above the complete dissociation
threshold is one of the basic unsolved problems of atomic
physics. Such a thr==body Coulomb continuum state
is the final state achieved in the processes of electron
impact ionization and double photoionization. Recent
angular correlation data on both of these fundamental
processes have provided the most detailed and rigorous
tests of current theories. In the case of electron impact
ionization of neutral atoms, in the final state two elec-
trons move in the field of a singly positively charged ion.
In the case of double photoionization of neutral atoms
two electrons move in the field of a doubly charged ion.
Hence, in general, all three two-body Coulomb interac-
tions are of comparable strength and there is no rea-
son to neglect one interaction in comparison to others.
Nevertheless, as is traditional in atomic physics, usually
prominence is given to the electron-nucleus interactions
and the electron-electron interaction is included in some
approximate way. In other words the six-dimensional
wave function of the three-body continuum is expressed
in the coordinates r~, rb of two electrons a, b with respect
to the nucleus. No explicit dependence on the electron
coordinate r b = r, —rb is included. In the most popu-
lar form of such general distorted-wave theories the final
thr==body state is represented simply by a product of
two electron-nucleus Coulomb wave functions but with
effective charges dependent upon the momenta k, kb of
both electrons relative to the fixed nucleus [1—4]. Thereby
the electron-electron interaction is represented merely by
a dynamic screening, due to the presence of a second
electron, of the nuclear charge seen by one electron. A
criterion by which the effective nuclear charges may be
chosen was put forward by Peterkop [5] and Rudge and
Seaton [6] (see also [7]), based on a consideration of the
classical motion of three Coulomb particles in the to-
tal three-body Coulomb potential at asymptotically large
distances. Recently [8], the electron-electron interaction
has been explicitly included in the form of an asymptotic
phase factor.

In a completely quantum-mechanical treatment of the
impact-ionization and photoionization processes, the full

symmetry of the three two-body Coulomb interactions
has been taken into account [9]. In this case the three-
body wave function is represented as a product of three
two-body Coulomb wave functions, one for each pair of
interacting particles. Each pair is considered to interact
separately with a relative energy on the two-body energy
shell and with electric charges unscreened by the pres-
ence of the third particle. Although this approximation
has been very successful in describing angular distribu-
tions of ionized electrons, for both electron impact and
photoionization [9,10], it suffers from several deficiencies.
The most serious of these concerns the absolute value of
cross sections obtained for low total energy of the contin-
uum electrons. In this case it appears that the absolute
values are much too low. The reason can be traced to
the appearance of two-body normalization factors in the
three Coulomb (3C) product wave function. The nor-
malization factor corresponding to the repulsive electron-
electron interaction goes exponentially to zero as the to-
tal energy above threshold E = E~+Eb = (k~+ k&)/2 of
the two electrons goes to zero. This exponential decrease
causes the magnitude of the cross section also to decrease
exponentially, a behavior which is at variance with the
Wannier threshold law and with experiment.

The main result of this paper is to formulate a strategy
to correct this deficiency of the 3C wave function while
still maintaining the philosophy that all three Coulomb
interactions should be included on an equal footing. This
will be done by the introduction of effective Sommerfeld
parameters in the two-body factors in the 3C wave func-
tion. The Sommerfeld parameter a = ZqZzpqz/ktz is
a measure of the strength of the Coulomb interaction
between particles of charges Zt and Zz, reduced mass

pt2, and momentum ktz = p, tz[kq —k2[ conjugate to
Here new Sommerfeld parameters which

are functions of all three relative momenta will be intro-
duced. This corresponds to the modification of a par-
ticular two-body Coulomb interaction by the presence
of the third particle, the degree of modification being
dependent upon the momenta of the two particles rela-
tive to the third in question. Such a modification rep-
resents a dynamic screening (DS) of the three two-body
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where the nine coefficients A,~ c R and i = a, b or ab
designate the two-body interaction of the two electrons
with the nucleus and the electron-electron interaction,
respectively. In the particular case of two electrons in
the field of a nucleus the original two-body Sommerfeld
parameters are

Z Z 1
A~ = ——,Ab= ——,A~b=

k, ' kb' 2k b

for nuclear charge Z (atomic units are used throughout).
The coefFicients A,~ must be determined on the basis

of physical considerations. One condition, a generaliza-
tion of that given by Peterkop [5] for a product of two
Coulomb functions, is that

Pa+ Pb+Pab = &a+Orb+ &ah ~ (3)

In the classical interpretation of the asymptotic mo-

tion given by Peterkop, i.e. , the relative coordinates
r, = (k, /p, )t, where t is the time, the right hand side of
(3) is proportional to the total Coulomb potential. Hence
the transformation (1) preserves the value of the asymp-
totic Coulomb potential. This also guarantees the fulfil-

ment of the boundary conditions [13]. Here the further
necessary conditions will be imposed by the requirement
that in the limit k, ~ 0 (i = a, b, ab) the two particles
concerned interact undisturbed by the third, i.e. , P; = a, .

In this work attention will be concentrated on the sym-
metric case A: = kb = k where recent data are available.
Then only the limit k b ~ 0, i.e. , two electrons have zero
relative momentum, arises. In addition, in the collinear
configuration the electrons see an effective nuclear charge
of Z —1/4 as demanded by an expansion about the po-
tential saddle in this configuration [14]. It is readily es-

tablished that these conditions are satisfied by

and

4Z —sin 6
4k

1 —sin 6
2k sine

(4)

(5)

where O = (cos k kb)/2 varies from ~/2 (collinear
configuration) to zero (electrons emerging parallel with
the same energy). Note that when 8 = it./2, p, b = 0.
Hence when the nucleus is between the two electrons the
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Coulomb interactions and hence the new wave function
will be designated DS3C. The functional form of the wave
function and the T-matrix element are exactly as used
before [9,11,12]; only the Sommerfeld parameters in the
two-body wave functions are changed. The momentum-
dependent Sommerfeld parameters P; are introduced sim-

ply by a linear transformation from the original set o.„
1.e. ,

electron-electron interaction is subsumed completely in
an effective electron-nuclear interaction. As 8 decreases
from x/2 to zero the nucleus moves off the interelec-
tronic line and the electron-electron interaction is slowly
switched on, reaching its unscreened value for 8 = 0.

It will now be shown that calculations on (e, 2e) col-
lisions using the DS3C wave function with the Sommer-
feld parameters (4) and (5) give excellent agreement with
absolute experimental data. In addition, a recently ob-
served new feature, a deep minimum in (e, 2e) cross sec-
tions, which is not predicted by distorted-wave calcula-
tions, is reproduced for the first time using the DS3C
wave function.

Since the only absolute data available are on helium,
it is necessary to introduce one free parameter, an ef-
fective charge Z, ir for the motion of the electrons in the
He+ core. We stress that this is the only parameter in

the theory. The T-matrix element is the same as used
in Refs. [11,12], where the perturbation potential in the
incident channel is the Coulomb interaction with the nu-

cleus and both helium electrons; one is ionized and the
other remains in its ground state.

In Fig. 1 is shown the collinear equal-energy-sharing
triply differential cross section (TDCS) at 2 eV above
threshold as a function of the angle of the interelectronic
axis with respect to the beam direction. The data are
absolute and the theory is in excellent agreement in both
magnitude and shape. The singlet and triplet cross sec-
tions are shown also, the latter being zero at 8 = n/2,
from symmetry requirements. In the inset is shown the
cross section calculated with the original 3C wave func-

tion [11,12]. Not only is the cross section more than 3
orders of magnitude too small, but also the subsidiary
maximum centered around 7r/2 is absent.

In Fig. 2 the cross section for equal-energy sharing 2

eV above threshold is shown for the arrangement where

8a is fixed at 330' and 8b varied. The cross section is

vanishingly small for parallel emission and again there is

excellent agreement with absolute data. In particular a
small shoulder around 8b = vr/2 is reproduced.

Murray and Read [15,16] have recently measured

equal-energy, equal-angle cross sections for varying an-

gles Q of the incident beam to the plane spanned by k,
and kb. The angle Q was varied between zero (coplanar
geometry) and ir/2 (equatorial geometry). In particular
they observed, for Q = 67.5', a remarkably deep mini-

mum near 0 = 70', where 28 is the relative angle of the
two emerging electrons. The origin of this dip has re-

mained unexplained and in particular does not appear in

distorted-wave theories. However, in Fig. 3 it is shown

that the minimum for incident energy 64.6 eV, final elec-

tron energy 20 eV, and @ = 67.5' is reproduced by the
DS3C wave function. The calculations show that the

dip is a true zero, itself remarkable since the T-matrix
element is a sum of diff'erent interactions between the
four particles involved in the collision. The theoretical
and experimental minima are not quite coincident but in
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FIG. 1. The TDCS for collinear configu-
ration with E = Ey ——1 eV, as a function
of the angle of the interelectronic axis with
respect to the beam direction. Continuous
hne: calculations using the DS3C wave func-
tion; singlet (dotted line) and triplet (dashed
line) cross sections are also shown. The in-

set shows the results with the 3C wave func-
tion. The experimental data are taken from
Ref. [2].
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FIG. 2. As Fig. 1 but with 8 = 330'
fixed (which is designated by the arrow) and
eg variable.

Q
sk

O
O
O

0.0
A I

90.0
I

180.0
8~ (degree)

$60.0

FIG. 3. The experimental results for
He(e, 2e)He+ with E = Eq = 20 eV from
Ref. [16]compared with calculated TDCS us-

ing the DSBC (continuous line) and 3C (dot-
ted line) wave functions. The data have been
normalized to theory at 8 = 90 .

25.0
I I I I

30.0 45.0 80.0 75.0 90.0 105.0 220.0
8 (degree)

I I I I

135.0 150.0 285.0 2$0.0

380l



VOLUME 72, NUMBER 24 P H YSICA L R EU I E%' LETTERS 13 3VNE 1994

O

V)

Cl

FIG. 4. TDCS for ionization of hydrogen
with E = Fb = 6.8 eV, 8 = 345', and
Ob variable. Continuous line: results us-

ing DS3C wave function. Dashed line: re-
sults using 3C wave function. Data are from
Ref. [17].
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view of the sensitivity of the dip position (e.g. , to the
initial-state wave function used) in the theory and the
fact that the experimental resolution is = 6', the agree-
ment should be considered satisfactory. Also shown in
Fig. 3 are the results using the 3C wave function where
the deep minimum is completely absent.

In the case of an atomic hydrogen target the data are
not absolute and theory and experiment must be normal-
ized to each other. Previous calculations [17j using the
3C wave function showed qualitative agreement with the
data but certain details were not reproduced. For exam-
ple, as shown in Fig. 4 for the case of E, = Eb = 6.8 eV
with ea = 345' (designated by the arrow in Fig. 4), only
a single peak arises in the 3C calculations, in disagree-
ment with experiment. The new calculation, however,
reproduces also the subsidiary peak near 8b = 80'. This
peak arises from the electron-electron scattering contri-
bution to the T-matrix element.

In summary, it has been shown that a new approach
to the three-body Coulomb continuum, in which the two-

body Coulomb interactions involve Sommerfeld param-
eters dependent upon all three relative moments, gives
absolute (e, 2e) cross sections in excellent agreement with
experiment. This modification of the symmetric 3C wave
function has removed its major deficiency (namely, the
inability to predict absolute cross sections near thresh-

old) and significantly improved the agreement with the
detailed shape of angular distributions. We have per-
formed more extensive calculations than are shown here
for difFerent geometries and in all cases have achieved
agreement with experiment. Further, it has been shown

here that a recently observed deep minimum in equal-

energy, equal-angle (e, 2e) cross sections is reproduced.
Its origin appears to be not kinematic but to arise from
a quantum interference between the various two-body
Coulomb interactions contributing to the ionization am-

plitude.
It should be remarked that in a recent paper Alt and

Mukhsmedzhanov [13] showed that a correct description
of the asymptotic region where two particles are close
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together but far away from the third leads to the in-

troduction of position-dependent relative moments. Our
approach is very similar in philosophy to theirs and in-

deed it can be shown that in the Peterkop interpretation
of the asymptotic motion our limits are compatible with
theirs.
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