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Coexistence of Regular Undamped Nuclear Dynamics with Intrinsic Chaoticity
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We study the conditions under which the nucleons inside a deformed nucleus can undergo chaotic
motion. To do this we perform self-consistent calculations in semiclassical approximation utilizing a
multipole-multipole interaction of the Bohr-Mottelson type for quadrupole and octupole deformations.
For the case of harmonic and nonharmonic static potentials, we find that both multipole deformations
lead to regular motion of the collective coordinate, the multipole moment of deformation. However,
despite this regular collective motion, we observe chaotic single-particle dynamics.
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The question about the origin of dissipation in collective
motion of finite Fermi systems [1] such as atomic nuclei
or small metallic clusters is an intriguing problem, which
up to now is not completely solved satisfactorily. For
example, the mutual balance of one-body and two-body
processes is still a question of debate. For the case of
one-body dissipation and friction in nuclear dynamics,
Swiatecki and co-workers [2—5] have developed this pic-
ture: Particles which move in a shape-deformed container
are reflected from the (moving) walls, and due to parts of it

having positive curvature (for higher multipole moments)
the particles very quickly loose their synchronization, thus
inducing pseudorandom motion, i.e., heat, into the sys-
tern. At the same time the shape oscillation is very much
slowed down.

Blocki et al. [4, 5] consider a purely classical gas of
particles contained in a deformed billiard. The only simi-
larity with a Fermi gas comes from the fact that ini-
tially the particles' momenta are distributed within a
Fermi sphere. The walls of the container undergo pe-
riodic shape oscillations with a frequency much smaller
than a typical single particle frequency. In the interior
of the container the particles move on linear trajectories.
They study the particle kinetic energy increase as a func-
tion of time and find that for ellipsoidal shape deforma-
tions (8 = 2) the particles act as a classical Knudsen gas
[6], i.e., the total kinetic energy increase over an entire
shape oscillation period is 0. However, for 4 ~ 3 the
kinetic energy in the single-particle motion is not com-
pletely "given back, *' but rather steadily increases in time.
This is explained by the fact that in an 4 = 2 poten-
tial the motion of the particles remains nonchaotic and
therefore synchronized, whereas in the 4 ~ 3 the scatter-
ing of the segments of the wall with positive curvature
leads to chaotic motion similar to the one observed in a
Sinai [7,8] billiard and thus a destruction of synchroniza-
tion. This scenario is very similar to the so-called Fermi
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Vtei(r, t) is the potential associated with the (separable)
multipole-multipole force [13,14, 16]

V& &(r, t) = p, tqt(r)gt(t), (2)

and Vp is the static external potential. We take here Vp =
zmcupr, resulting in the Bohr-Mottelson Hamiltonian

[12], and Vo = ztntoor6, to also investigate nonharmonic
static potentials.

For the r2 static potential the coupling constants p, q

can be calculated using a self-consistent normalization
condition [12, 16],
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acceleration, proposed to explain the occurrence of very
high energy cosmic radiation [9, 10]. The fact that de-
formed static nuclear potentials may exhibit chaotic mo-
tion was recognized early by Arvieu and co-workers [11].

In this paper we present an attempt to include self
consistency in the problem of motion in multipole-
deformed nuclear potentials. We have chosen a self-
consistent, but schematic, model of separable forces. We
chose an interaction of the Bohr-Mottelson type [12]
with static r and r potentials and multipole-multipole
interactions as studied, for example, by Stringari and co-
workers [13—16]. In the small-atnplitude limit, this model
has recently been investigated in the semiclassical limit
[16];as is known, the low-lying quadrupole and octupole
frequencies come out to be in reasonable agreement with
experimental data. Our single-particle Hamiltonian is
then
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and the multipole moments Qt(t) are
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FIG. 2. Positive Lyapunov exponents for the single-particle
trajectories leading to the time evolution of the collective
multipole moments shown in Fig. 1.

the dominant frequency and no cu
' noise. This result

is surprising, because the collective multipole coordinates
are coupled to and generated [see Eq. (7)] from the

integration over the single-particle coordinates, which in

most cases exhibit chaotic motion —as shown below.
To analyze the single-particle motion in our six-

dimensional single-particle phase space we determine the
set of six Lyapunov exponents by observing the long-
term evolution of an infinitesimal six sphere around the

particle. Since we are dealing with a Hamiltonian system,
the volume of this sphere —averaged over all particles—
will not change. However, it may deform into a 6-
ellipsoid. The ith Lyapunov exponent is then defined as

8;(r) t
A; = llm Ir 'logy

( )
)'

where 4;(t) is the length of the ith principal axis of the

ellipsoid and the symbol ( )z indicates averaging over
all single particles. In our calculation we use the standard
numerical techniques of continuous rescaling and Gram-
Schmidt reorthonormalization to extract the numerical
values of the exponents [20,21]. As a control of the
numerical accuracy we checked the value of the sum
of the exponents (theoretically expected to be exactly
0), and found ~g, , A;~ ( 10 7 bitsj(fm/c) in all cases
considered.

In Fig. 2 we display the three positive Lyapunov
exponents as a function of time for the four cases
considered here. On the left we show the results for the
harmonic static potential (r2), and on the right for the
nonharmonic (rs). For the top the quadrupole-quadrupole
interaction (Q2) was used, and for the bottom panels
we used the octupole-octupole interaction (Qs). All
cases except for the (Q2, r2) have at least one positive
Lyapunov exponent and therefore show chaotic single-
particle dynamics. The values of the maximum positive

TABLE I. Values of the largest Lyapunov exponents [in bits

(fm/c)] obtained in the full self-consistent calculations (upper
half) and in the calculations with static external multipole
potentials with deformations frozen to the maximum values
obtained in the self-consistent calculations (lower half) for
the harmonic (r2) and nonharmonic (r6) static potentials
and quadrupole-quadrupole (Q2) and octupole-octupole (Q3)
interactions. The error bars are estimated statistically.

Q2

Q3

Q2

Q3

f 2

0
(4 ~ 1) X 10-'

0
(8 ~ 2) X 10 5

r6

(2 ~ 1) X 10-'
(1.s ~ o.s) x 1o-'

0
(1 ~ 0.3) x 1o 3

Self-con.

Static

Lyapunov exponents A& are listed in Table I. (The
large fluctuations in the individual Lyapunov exponents
extracted for the calculations with static r~ potential are
as expected in these nearly harmonic systems. )

In order to analyze the causes for the observed single-
particle chaoticity we also performed calculations with
non-self-consistent fixed multipole potentials, where
the deformations were frozen at the maximum values
obtained from the self-consistent calculations. The
Lyapunov exponents obtained from this procedure are
displayed in Fig. 3, and the values of the largest positive
Lyapunov exponents are again listed in Table I.

For the static octupole deformation one can show ana-

lytically the presence of weak destruction of integrabil-

ity; and for the static quadrupole one obtains integrability.
This is reflected in the obtained values of the largest Lya-
punov exponents in these cases. In our opinion the most
remarkable change from the maximum static deformation
to the self-consistent calculation occurs for the (Q2, rs)
case. Here the calculations with static quadrupole defor-
mation yield no chaos, but the self-consistent calculations
show chaotic single particle behavior. We attribute the
origin of this chaoticity to the exchange of energy be-
tween the motion of the individual test particles and the
collective motion of the multipole coordinate. This ex-
change of energy is possible, because the individual test
particles oscillate with frequencies, which do not have a
rational ratio with the frequency of the collective coor-
dinate. This results in the particles reaching metastable
or unstable points in phase space during the course of its
time evolution. At these points small changes in the initial
conditions will have a large effect on the subsequent dy-
namics. An example for this would be the decision if the
particle will temporarily oscillate in or out of phase with
the collective coordinate. Consequently, these points pro-
vide large positive contributions to the Kolmogorov en-

tropy, and chaotic single particle dynamics results.
In turn, one also expects each single test particle to have

a randomly fluctuating effect on the energy contained in
the motion of the collective coordinate. However, since
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FIG. 3. Positive Lyapunov exponents for the single-particle
trajectories resulting from a time evolution in an external
static multipole deformed potential with deformation equal
to the maximum deformation obtained in the self-consistent
calculations of Fig. 2.

there are many test particles, these chaotic random fluctua-
tions are averaged out leaving only a smooth sinusoidal
oscillation of the collective coordinate. The following is
qualitatively new in our investigation: the generation of
regular dynamics for the collective variable, the multipole
moment of the collective oscillation, from the ensemble
of single particles with chaotic trajectories. This is an ex-
ample of how ordered macroscopic motion can result from
underlying chaotic microscopic dynamics. (To obtain this

result, it was crucial to employ a self-consistent treatment
of the dynamics entailing conservation of total energy. )

One may speculate that this interplay between chaotic-

ity in individual single particle degrees of freedom and

regularity in certain collective coordinates may also play
a role in the time evolution of other physical systems.
Examples that come to mind as likely candidates are

the interplay of collective and microscopic dynamics in

macroscopic fluid motion, plasmas in a tokamak, and the

human brain wave activity. Chaos on a microscopic level
need not necessarily lead to a catastrophic breakdown of
the system on the macroscopic scale.

This work was supported in part by the U.S. Na-

tional Science Foundation under Grant No. PHY 90-

"On leave from: Budker Institute Of Nuclear Physics,
630090 Novosibirsk, Russia.

[I] D. L. Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).
[2] J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel,

A. J. Sierk, and W. J. Swiatecki, Ann. Phys. (N.Y.) 113.
330 (1978).

[3] J. Randrup and W. Swiatecki. Ann. Phys. {N.Y.} 125,
193 (1980).

[4] J. Blocki, F. Brut, T. Srokowski, and W. J. Swiatecki.
Nucl. Phys. A545, 511c (1992).

[5] J. Blocki, J.-J. Shi, and W. J. Swiatecki, Nucl. Phys.
A554, 387 (1993).

[6] M. H. C. Knudsen, The Kinetic Theory of Gases (Wiley„
New York, 1950).

[7] Ya. G. Sinai, Russ. Math. Surveys 25, 137 (1970).
[8] W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65,

2213 (1990);ibid. 66, 2172, (1991}.
[9] E. Fermi, Phys. Rev. 75, 1169 (1949).

[10] A. J. Lichtenberg and M. A. Lieberman, Regular and
Stochastic Motion (Springer, New York, 1983).

[11] J. Carbonell and R. Arvieu, in Proceedings of the

Topical Meeting on Nuclear Fluid Dynamics, Trieste,
1982, edited by M. Di Toro, M. Rosina, and S. Stringari

(unpublished); R. Arvieu, F. Brut, J. Carbonell, and

J. Touchard, Phys. Rev. A 35, 2389 (1987).
[12] A. Bohr and B.A. Mottelson, Wucleur Structure (W. A.

Benjamin, Reading, MA, 1975), Vol. II, p. 350 ff.
[13] S. Stringari, Nucl. Phys. A325, 199 (1979).
[14] S. Stringari, Phys. Lett. 103B, 5 (1981).
[15] H. Reinhardt and H. Schulz, Nucl. Phys. A391, 36 (1982).
[16] H. Kohl, P. Schuck, and S. Stringari, Nucl. Phys. A459,

265 (1986).
[17] G. P. Maddison and D. M. Brink, Nucl. Phys. A378.

566 (1982).
[18] C. Y. Wong, Phys. Rev. C 25, 1460 (1982).
[19] T. Suzuki, Nucl. Phys. A217, I82 (1973).
[20] G. Bennetin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn,

Meccanica 15, 9 (1980).
[21] A. Wolf, J.B. Swift, H. L. Swinncy, and A. Vastano.

Physica (Amsterdam) 16D, 285 (1985}.

3774


