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Critical Behavior of the Second Harmonic in a Density Wave System
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We report a high resolution synchrotron x-ray study of the first- and second-harmonic order parame-
ter and critical fluctuation scattering at a nematic-smectic-A2 transition. The order parameter, smectic
susceptibility, and correlation lengths for the fundamental, as well as the order parameter and smectic
susceptibility for the second harmonic, yield critical exponents in good agreement with 3D-A'V multicrit-
ical scaling theory. However, the second-harmonic correlation lengths disagree markedly with predic-
tions of current theory for density wave systems.

PACS numbers: 64.70.Md, 61.30.—v, 64.60.Fr

A wide variety of physical systems exhibit phase transi-
tions involving the establishment of a density wave which

may be characterized simply by its magnitude and by its

phase. Examples in solids include incommensurate
charge density wave (CDW) systems such as Nbsei [1]
and spin density wave systems such as Cr [2]. Two-
dimensional (2D) freezing from a hexatic fluid to a 2D
solid is another example [3]. Complex fluids exhibiting
lamellar ordering also may fall into this general class.
The simplest of these is the smectic-A (Sm-3) phase of
thermotropic liquid crystals [4]. The nematic (IV) phase
of rodlike liquid crystal molecules is orientationally or-

dered, but positionally disordered. The /V-Sm-A phase
transition corresponds to the establishment of a one-
dimensional mass density wave in a three-dimensional
fluid with the density wave along the direction of orienta-
tional order [4]. This broken symmetry defines the Sm-3
phase. The phase transitions and critical fluctuations in

such systems can be described by an order parameter tlte'~

which is associated with a sinusoidal density wave p=pti
+tire'~e . Hence the critical behavior associated with

fluctuations of the order parameter is expected to be XY-
like. Indeed, critical x-ray scattering at the Peierls tran-
sition in the CDW system blue bronze (K03MoOi) re-

vealed such three-dimensional (3D) XY critical fluctua-
tions [5]. Recent high resolution x-ray scattering and

ac-calorimetry experiments have also shown that many
features of the /V -Sm-3

~ phase transition in liquid crys-
tals are well described by the 3D LY model although the
correlation lengths exhibit weakly anisotropic critical be-
havior [6].

In the ordered phase of sine-wave order parameter sys-

tems not just the first harmonic but in some cases many

higher order harmonics, y„e'"~e" with n~ 2, may be
observed. A theory for the critical behavior of these
higher harmonics has been developed in the context of
hexatic liquid crystals [7,8]. This theory describes the

successive harmonics of the orientational order observed

experimentally in hexatic phase transitions very well [8]. X~ II X / ooc~y yg
cN

Ho~ever, to date no experiments have been reported on
the critical fluctuations associated with the higher har-
monics of sine-wave order parameter systems. This is be-
cause higher harmonic critical scattering is typically too
weak to observe experimentally. Thus very simple ques-
tions have not been answered. For example, in current
theories it is typically assumed either explicitly or impli-
citly [3,8] that the correlation lengths for the higher har-
monics must equal that of the first harmonic and this has
not, as yet, been tested experimentally.

In this paper we report a high resolution x-ray scatter-
ing study of the order parameter and critical fluctuations
associated with the first and second harmonics at the
1V-Sm-A2 transition in the polar thermotropic liquid
crystal material 4'-n-heptyloxycarbonylphenyl-4'-(4"-
cyanobenzoyloxy) benzoate (7APCBB). This material
was synthesized and first characterized at the Technical
University of Berlin [9];the sample investigated was from
the same synthetic batch as that used previously for C~
measurements [10]. We find that the first-harmonic or-
der parameter and critical fluctuations are very close to
those expected for a 3D LY system with a very small
correlation length anisotropy. The second-harmonic peak
intensity both above and belo~ T, exhibits the behavior
predicted by Aharony and co-workers' [7,8] multicriti-
cal scaling theory for the 3D LY model. However, the
second-harmonic correlation lengths above T, diff'er both
in magnitude and in their critical behavior from those
characterizing the first harmonic. This is in disagreement
with current theoretical expectations including gauge
transformation theories of the IV-Sm-2 transition [11]
and remains unexplained. These results should have
consequences for the theoretical description of all 30
density wave phase transitions and possibly 2D systems as
well.

The compound 7APCBB has the structure
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and the phase transition sequence is [9,10]

I- W —Sm-A& —Sm-c&.
482 K 4I 5.8 K 4I 3.3 K

g,=t7~90lt $ =1280k

The Sm-Ap phase has a bilayer structure with the layer
thickness d=2L, where L is the molecular length. The
Sm-C~ phase is the analogous tilted bilayer. The nematic
temperature range is quite wide for this system, implying
that the nematic order parameter should be well saturat-
ed close to the N-Sm-Az transition; hence, this transition
is expected to be second order and 3D-XY-like. This has

been confirmed by a high resolution calorimetric study

[10]. Analysis of C~(N-Sm-Az) data yielded the critical
exponent a= —0.029 when a was a freely adjustable pa-
rameter, and a statistically equivalent fit was obtained
with a fixed at the 3D XY value (a = —0.007).

X-ray scattering data in the nematic phase were taken
on the IBM-MIT beam line X20B at the National Syn-
chrotron Light Source at Brookhaven National Laborato-
ry. The diffraction experiment utilized a triple-axis spec-
trometer with a bent Si(l I 1) monochromator and fiat

Si(111) analyzer together with horizontal and vertical
collimating slits. The consequent instrumental longitudi-

nal resolution was 3.54X 10 A ' half width at half
maximum (HWHM), the transverse in-plane resolution
was & 10 A ', while the out-of-plane resolution was
0.02 A ' HWHM. The scattering intensity in the Sm-
Ap phase was relatively strong. Therefore measurements
could be carried out using the Cu Ka radiation of a
Rigaku rotating-anode x-ray source on the same spec-
trometer. The sample was sealed in a beryllium cell hav-

ing a temperature stability of better than 0.002 K, and an

applied magnetic field of 0.65 T aligned the nematic
director in the scattering plane, resulting in a mosaicity in

the Sm-Az phase of 0.3' (HWHM). A linear drift of
——0.006 K/h in the transition temperature T, was ob-
served and this was taken into account in the data reduc-
tion. As expected theoretically and as demonstrated in

previous experiments [12], such T, drifts have no effect
on the observed critical behavior.

In the nematic phase we observed two diffuse peaks at
(0,0,qo) and (0,0, 2qo) with q0=0. 1080 A '. The ex-
perimental procedure was that a complete set of scans
was carried out at both qo and 2qo at each temperature
and the temperature was then increased to the next value.
Several such s~eeps were done during the experiment.
The value of T, was determined frequently during the ex-
periment by observing the onset of smectic mosaicity for
the qo peak. Figure 1 shows typical longitudinal (qll) and
transverse (qi) scans through the qo and 2qo peaks at
—10 mK above T,. The marked difference in magnitude
between the integrated intensities of the qo and 2qo peaks
shown in Fig. 1 suggests strongly that the transition is
driven by layer formation of antiparallel dimer pairs of
dipolar molecules. It is immediately evident from Fig. 1

that the scans at 2qo are much broader than those at qli,
which implies that the relevant correlation lengths of the
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FIG. 1. Longitudinal and transverse x-ray scans through the
qp and 2qp peaks in 7APCBB at T —T, 0.0l0 K for qp and
0.013 K for 2qp. The solid lines are the results of least-squares
fits by Eq. (1) convoluted with the instrumental resolution func-
tion. The dashed lines for the 2qp scans correspond to the re-
sults of least-squares fits by Eq. (4) with ttz 1.4.

2qo fluctuations are much shorter than those of the qo
fluctuations. Thus, even without any analysis, it is clear
that the theoretical assumption that the correlation
lengths for the successive harmonics are identical cannot
be correct. We now discuss quantitative analysis of the
measurements.

Above T„ fluctuations in the components of the order
parameter y„e'"~ give rise to critical scattering which can
be described by the x-ray structure factor [13]

kg Tg„
z z z

I +(II (qnll ttq0) +(Jnq i +en(inq J..
convoluted with the instrumental resolution function. g„
is the susceptibility and gll„and gi„are the correlation
lengths along the longitudinal and transverse directions
associated with a given order parameter y„e'"~. The
quartic term, needed to describe the non-Lorentzian
transverse line shape for the qo fluctuations, has a freely
adjustable coe%cient c„. We find that cI exhibits the
same kind of temperature dependence seen typically for
N-Sm-A l and other N-Sm-A [14] systems while the 2qo
profiles are well described by pure Lorentzians; that is,
cq =0 within the errors. Simultaneous fits of the longitu-
dinal and transverse scans yielded (gl, (ill, gil) and
(gz, gllz, (iz) for the peaks around qo and 2qo, respective-
ly.

Susceptibility and correlation lengths for the qo peak
and the 2qo peak in the nematic phase are shown in
Figs. 2(a) and 2(b) together with power law fits using
g(t) =got ", &ll(t) =flit "', and &i(t) =&it ", where
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FIG. 2. (a) Sm-A2 susceptibility g~ and the
longitudinal and transverse correlation lengths

gt~ and (z~ for the first harmonic at qo in the
nematic phase of 7APCBB. The solid lines are
single power laws with 3D LY exponents

y~ =1.316, v~~~ =v~~ =0.669; (b) same
quantities for the second harmonic at 2qo.
The lines represent the results of power law fits
(see text) with yz =0.41, v~~2 =0.31, and

v~2 =0.23. All errors in g and g are less than
the size of the plotted symbols. Data from
several runs are superimposed.

t =(T—T, )/T, . For all of the data, the 1 standard devi-

ation errors in g and g are smaller than the size of the
plotted symbols. However, T —T, has a typical uncer-
tainty of 0.012 K due to the combined eA'ects of the un-

certainties in T, in a given run and the T, drift rate. For
the q0 peak, the least-squares values of the critical ex-
ponents and amplitudes are y~ =1.34+0.14, vl]] =0.70
~ 0.07 and g~~~ =7.0 A, v~~ =0.64+ 0.07, and g~~ =0.83
A. These exponent values agree within the errors with

the 3D XY values y~y=l. 316+0.002 and v~y=0. 669
~0.00l [15], and the length anisotropy itself is quite
small, (v~~

—v )~ =0.06~0.03. The latter is obtained
from fits to gu~t/g~~ directly. In order to stress how close
these q0 results are to 3D LY behavior, the lines shown in

Fig. 2(a) represent fits with exponent values fixed at XY
values y = y~y, vl] ~

= v~ ~

= v~y. Power law fits to the gq,

)~~2, and g~z values obtained from the 2qo diffuse peak
yield much different exponents: y2 =0.41 +'0.09, v~~z

=0.31~0.04, and )~~2=27. 1 A, v~2=0.23+'0.04 and
=5.2 A, and (v~~

—v~)z=0.08+ 0.04. The error
bars represent 1 standard deviation statistical errors to-
gether with the effects of the uncertainty in T, From the.
relative temperature dependences it is readily deduced

that the scattering at 2q0 arises from intrinsic second-
harmonic fluctuations rather than independent Sm-A~

fluctuations or multiple scattering. The ratio of scatter-
ing wave vectors 2qa/qo is 2.000~ 0.003 both above and

below T, with no systematic temperature dependence.
The ratio of diffuse intensities g2/g~ varies from
-4XIQ ' at t=3X10 ' (where the qo fundamental
scattering is quite weak) to -4X10 at t =3 X 10

In addition to studying the diff'use scattering above

T„we have measured the integrated intensity l(q„)
=fdqS(q —nqo) of the quasi-Bragg peaks in the Sm-Aq

phase. The temperature dependences of 1(qo) and

l(2qo) are shown in Fig. 3, where the same arbitrary
scale has been used for both intensities. Note that the ra-
tio l(2qp)/1(qo)(- ly2/y~l ) in the Sm-A2 phase is

-0.07 at T=T, —2 K. This corresponds to a relative
value of the order parameters of i@2/y~l-0. 26, the un-

certainty arising from the molecular form factor which is

(3)

or P„=2—a —P„and y„= —(2 —a)+2&„. The 3D XY
value for p~ is 1.661, yielding P~ =0.346 and y~ =1.315 as
expected. The value of p2 is 1.16+ 0.07 [7,8]. Thus
P2=0.85+ 0.07 and y2=0. 31 ~0.14. This value of y2 is

in good agreement with our experimental value @2=0.41
0.09. As is evident in Fig. 3, the intensities for both qo
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FIG. 3. (a) Bragg intensity, integrated over the central

mosaicity, versus temperature at qo. The solid line is a single

power law lT —T, l

' with 2p~=0.69; (b) Bragg intensity, in-

tegrated over the central mosaicity, versus temperature at 2qo.

The Lorentz factor, sin28, has been removed so that the relative

intensity of (b) to (a) corresponds to —
l y2/@&l2 times the ratio

of the molecular form factors squared. The solid line is a single

power law l
T —T, l

' with 2p2=1.7.2/2

not well known (for a discussion, see Ref. [16]). This
may be compared with the value of lyz/y~l ~0.001 in

the Sm-A phase of nonpolar 40.7 [16],which is typical of'

monolayer smectics.
The behavior of g2 in the nematic phase and I(2qo) in

the Sm-A2 phase can be quite well explained in terms of
a scaling model for the behavior of harmonics of the free
energy [7,8]: F(t, h„)—ltl 'g„g„(h„/ltl ") where p„ is

the crossover exponent for the nth harmonic. One im-
mediately obtains

(2)
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and 2qo begin to saturate at about 1 K below T„presum-
able due to the pretransitional effects of the Sm-A2-Sm-
C2 transition which occurred at T, —T=2.5 K in this
sample. Fits of the data to single power laws for
~T —T

~
&0.8 K yield P~ =0.39+ 0.04 and P2=0.76

~ 0.04 in reasonable agreement with the theoretical
values P~ =0.346~0.001 and P2=0.85+ 0.07. To em-
phasize this agreement, the lines in Fig. 3 are drawn with
the 3D XY values for P~ and P2.

The behavior of gt2 and g&2 and the critical exponents
vt2=0. 31, v&2=0.23 is more diScult to explain. The
heat capacity seems to be well characterized by a single
critical exponent a=a~@= —0.007. Thus, according to
theoretical expectations, contributions to F(t, it„ ) due to
fluctuations at qp and at 2qp should both vary like ~t ~

Conventional hyper scaling ideas lead to 2 —a =3 v„
=(vt„+2vj „)for all harmonics and thus the expectation
that v2= v~

= v~y. If this were true, it would folio~ from
y„=(2—r)„)v„ that r)2 must be very different from

r)l rtxY —0.03. Using v2 = vxv =0.669 and y2 =0.31
+0.14 predicted from harmonic scaling theory, one ob-
tains g2 =1.5+ 0.2, while the experimental y2 =0.41
~0.09 yields F2=1.4~0.2. In order to test this idea of
large g2 values, the 2qo scattering peaks were reanalyzed
with the form

kg Tg2
S(2qp) =

[1+ (II2(q s
—2qp) +4i~q ~ ]

(4)

As illustrated in Fig. 1, when g2 was fixed at 1.4 not even
a qualitative fit to the scattering profiles was possible.
When t)2 was taken as a freely adjustable parameter at
each temperature, g2 values ranged from —0.3 to +0.6
with an average value of 0.25. Thus, as noted previously,
the second-harmonic profiles are quite close to being pure
Lorentzians. It should be noted that with F2=0.25 scal-
ing predicts v2 = y2/(2 —

r12) =0.23+ 0.06 compared
with the measured mean value v2=(vt2+2v~)/3=0. 26
~0.04. Thus fz, v2, and gz are internally consistent but
anisotropic hyperscaling, v~[2+ 2 v&2 =2 —a, is explicitly
violated for the second-harmonic fluctuations. This
analysis, of course, assumes that single power laws rather
than some complicated crossover form represent the
correct description of the critical divergences of the 2qp
fluctuations.

In summary, using synchrotron x-ray techniques it has
been possible to measure the critical behavior above T,
associated with both the first- and second-harmonic criti-
cal fluctuations. We have also measured the relative in-
tensities of the first- and second-harmonic density wave
order parameter scattering below T,. We find that the
first-harmonic critical behavior is 3D XY-like, albeit with
a small length anisotropy as is normally observed at
N-Sm-A transitions. The second-harmonic susceptibility
above T, and the integrated Bragg intensity belo~ T,
both are accurately predicted by the JY-model multicriti-
cal scaling theory [7,8]. However, the second-harmonic

correlation lengths and exponents differ markedly from
those characterizing the first harmonic. The scaling rela-
tion v~(2 —

rt2) =y2 is obeyed but anisotropic hyperscal-
ing, v~[2+2v&2=2 —a, is severely violated. This result
would appear to have important consequences for theories
for all density wave systems. Is there a basic error in our
current theoretical picture of density wave systems? Al-

ternatively, is there a unique feature of the Ã-Sm-A2
system which causes the violation of hyperscaling for the
second-harmonic fluctuations [I I]? Clearly, measure-
ments of the higher-harmonic critical fluctuations in oth-
er density wave systems including most especially solid
state materials such as KQ3Mo03, NbSe3, and Cr are
very important. Further guidance from theory would also
be helpful.
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