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Coexistence in Dipolar Fluids in a Field
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We examine two phase coexistence for soft sphere dipolar fluids in an applied field, H. Besides
being a fundamental test system for theory, dipolar fluids are used as models for ferrofluids. Gibbs
ensemble simulations were performed to determine the coexistence curve and an estimate of the
critical temperature, T„and density, p„as a function of applied magnetic field. In zero field we

show that coexistence most likely does not occur and if it does can only do so in a narrow range of
densities much lower than predicted theoretically. We discuss the structure of soft sphere dipolar
systems, which turns out to be much more complex than previously thought.

PACS numbers: 64.70.Ja, 75.50.Mm, 83.80.Gv

Fluids of strongly interacting dipoles with a repulsive
core potential are the simplest "atomic" fluids in which
the interaction is not radially symmetric. Dipolar fluids
are models for ferrofluids and their cousins, electrorhe-
ological fluids [1—3]. These materials combine the use-
ful properties of magnetic or electric materials and flu-

ids producing various interesting and valuable new prop-
erties [4—6]. For hard sphere dipolar fluids there have
been several theoretical predictions of a critical point and

phase coexistence [1,7—15]. Recent simulations were un-

able to find the predicted zero field coexistence [16—20].
However, coexistence is known to occur in a field for fer-

rofluids [21]. Because many applications of these systems
are in an applied field, there is much interest in their
structure as a function of an applied field. Taking a clue
from experiment, we present here results of simulations
of dipolar fluids in a field that locate critical points and
examine the fluid structure in the vicinity of the critical
points.

The original theoretical works on critical points and
coexistence in dipolar fluids were based on the van der
Waals results for fluctuating dipoles [7,8]. Several recent
calculations have also been along this line [ll—14]. A

difFerent type of coexistence due to magnetic ordering has
also been suggested [1,9,14,15]. In this case, coexistence
occurs due to the magnetic ordering of the dipoles in the
denser phase while the less dense phase is nonmagnetic
and isotropic. The magnetic liquid phase has been found

in simulations [16,17], but in zero field no coexistence has
been observed [18-20].

One of the de6ning characteristics of dipolar fluids is

the presence of chain structures [22]. The particles form
chains, because the strong dipolar interaction favors par-
allel "head-to-tail" alignment. The magnetic liquid phase
occurs in part because at high densities the chains be-
come aligned yielding a net magnetism [16]. In ferroflu-

ids, experiments to resolve single particle chains have yet
to be done, though evidence exists for long needlelike

agglomeration [23]. Simulations offer one means to de-

termine chain structure. In a forthcoming paper we will

characterize the dipolar fluid structure as a function of

density, temperature, and applied field. Here, we concen-
trate on the structure of the two coexisting phases and
how it relates to the occurrence of coexistence.

Our simulation model follows that of Wei and Patey
[16,17] and Kusalik [24]. We perform Monte Carlo (MC)
simulations on soft sphere dipoles with the pair potential
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where o is the effective particle diameter, s is the energy
scale, and p, is the dipole moment of the ith particle.
We will specify variables in reduced form: T' = T/s,
p' = pos, p'z = pz/sos, and H' = Hgos/s. The
Ewald sum is used to evaluate the dipole interaction in

periodic boundary conditions with the convergence pa-
rameter, a = 5.75, and reciprocal vectors are summed to
10+/I where I is the length of the simulation cell. The
"tin foil" boundary conditions which allow the magneti-
cally ordered state are used [17]. Canonical constant vol-

ume ensemble and Gibbs ensemble simulations have been
performed. Below the critical temperature the Gibbs en-

semble directly gives the two coexistence densities at a
given temperature [25,26]. The number of particles N in

the canonical simulations was 256 and in the Gibbs sim-

ulations, N = 512. Previous simulations [17] found in-

significant differences between 2M and 864 particle sim-

ulations in zero field. The canonical simulations ran for

a least 105 cycles with each cycle comprised of an at-
tempt to translate and rotate each particle. The Gibbs
simulations required at least 105 cycles; here, each cycle
included an attempt to move each particle once, 100 at-
tempts to change the cell volume, and 500 attempts to
exchange particles between the two cells. As has been

noted in earlier simulations [18,19] only a small percent-

age of exchanges is accepted in these Gibbs simulations.

Thus, an extremely large number of attempts is needed to
gather reasonable statistics. We have veri6ed that both
the pressures and the chemical potentials are the same in
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the two cells. The pressure is calculated from the virial
expression and the chemical potential is calculated from
the overlap of the particle insertion and extraction energy
distributions [27].

There are three relevant parameters for this problem:
the density p, the dimensionless dipolar coupling strength
given by the ratio A = p2/crsT, and the dimensionless
applied field il = IJH/T. Strictly speaking T and dipole
moment are independent variables, but our soft sphere
dipolar potential is sufficiently close to the hard sphere
dipolar potential that we can treat them as dependent
variables. Thus, while we use Iu' = 2.5, our results can
be mapped to other values of p" via A. The dimensionless
temperature is r = 1/A.

Our simulations in the Gibbs ensemble were performed
with H' = 0.25, 0.5, 1.0, and 2.0. For all of these fields we
found coexistence and list the critical parameters in Ta-
ble I. For each field only a few points on the coexistence
curve were obtained (e.g. , see Fig. 1), because the crit-
ical temperatures, r„are relatively low, making simula-
tion times prohibitively long. For this reason, H' ( 0.25
were not studied. We determined r, by bracketing it be-
tween the Gibbs run that gave two clearly distinct densi-
ties implying coexistence and the Gibbs run that gave a
single peaked density distribution implying that r ) r,
The uncertainty in r„+0.008, comes directly from this
bracketing. The critical density is taken from the law of
rectilinear diameters. With just a few points, estimat-
ing the uncertainty in p, is difficult, but as p, must be
between the two coexisting phase densities, we estimate
the uncertainty as +0.005.

The plot (Fig. 1) of our calculated ik versus r, ex-
hibits the expected increasing r, with increasing g, . Our
infinite field r, is 0.18 which is lower than all predictions
for the zero field r, . While we are unable to definitively

TABLE I. Critical parameters at various field strengths.

H'
0.25
0.50
1.0
2.0

PC

0.032
0.032
0.030
0.035

AC

8.93
6.94
6.44
5.95

gC

0.65
1.40
2.60
4.75

TC

0.112
0.144
0.155
0.168

determine the zero field limit of r„an upper bound can
be obtained from a spline extrapolation of the data which

gives r, (rk = 0) ( 0.07. This pushes the zero field upper
bound of r, to even a lower value than previous simula-

tions [17—20] yielding an even stronger disagreement with
analytic calculations.

Our p, (solid circles) are shown in Fig. 2 which also
shows experimental data (squares) of Ref. [21]. The crit-
ical density is small and independent of applied field,

p,' = 0.03. This value represents a lower bound to zero
field p, . An applied field tends to lower the critical den-

sity as the magnetic liquid state occurs at lower densities
in higher fields. However, the zero field and infinite field

p, are identical in some calculations [11,14].
The experimental data have a regime (p' = 0.01)

where the critical density varies little with increasing field

as in our simulations. At p' = 0.008, no coexistence was
observed in the experiments up to the maximum attain-
able field, il = 10.8. Most of the measured data cor-
respond to a region of small ri, variation as p, varies
strongly. In these experiments, coexistence only occurs
in the presence of a field. Unfortunately, we are unable
to examine lower fields to determine if our simulations
also cross over to the opposite dependence. The diKer-
ence between the experimental crossover density and our
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FIG. 1. The dimensionless critical field, g„versus the crit-
ical temperature, ~ . The inset gives the coexistence points
calculated for rI = 1.40 (H = 0.5). There is no coexistence
at 7 & 0.15.
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FIG. 2. The critical densities, p„are plotted as a function
of the applied field (solid circles). Experimental data from
[21] are also given (solid squares). A sharp rise in the critical
fields occurs at p ( 0.01, where for the highest field measured
(iI = 10.8 and open square) coexistence was not yet observed.
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p, = 0.03 can be ascribed to the large polydispersity of
the experimental system. The average A is 1.0 for the
experimental system. However, this yields a much larger
critical temperature, 7., = 1.0, than found in any sim-
ulation. Although for a monodisperse system ~, should
be lower, the discrepancy in the critical temperature is
too large to be solely due to polydispersity. Recent ex-
periments [21] show that the solvent plays an important
role in determining the critical points. Using a diferent
solvent, coexistence can occur in zero field. As we will

show, this implies that the purely repulsive core poten-
tial is not a good model for ferrofluids. At least some
attractive component is needed.

Our simulations are complementary to recent Gibbs
simulations performed by van Leeuwen and Smit [19].
Their core potential included an additional attractive
part of the Lennard-Jones (LJ) potential, 4s'(o/—r)s.
Here s' is an adjustable parameter that allows variation
of the potential from full LJ (e' = s) to the soft sphere
potential (s' = 0) used here. At s' = z and p' = 2,
the phase diagram is dominated by the LJ interaction
and has a coexistence region (gas-liquid) with a criti-
cal point near that of a LJ fluid. As s' decreases, the
critical density and temperature decrease monotonically
until s' = 0.3s' at which p', = 0.10 and w,

" = 0.17. For
smaller s' they could not find coexistence. Those values

are then upper bounds for the zero field critical density
and temperature of a soft sphere dipolar system.

The combination of van Leeuwen and Smit's and our
results gives lower and upper bounds on p, which allow

only a narrow range of densities for coexistence at zero
field. Assuming that coexistence occurs at z' = 0, then
a linear extrapolation yields an upper bound p,

' = 0.03.
Since our nonzero field simulations yield about the same
value for the lower bound, it appears that for soft (or
hard) sphere dipolar systems zero field coexistence is un-

likely because the extrapolation is an overestimation.
It is now particularly interesting to determine if the

structure of the coexisting phases corresponds to either
of the two types of coexistence predicted theoretically.
Figure 3 shows projections for the two coexisting densi-

ties at r = 0.136 and H' = 1 with H in the z direction.
We find the structure of the two coexisting phases to be
similar, in part because the density difference is s~all.
Chains are clearly visible in both phases which are mag-

netized as expected for such large fields. We definitely

do not have a gas-liquid coexistence. Our less dense

phase contains chains and cannot be viewed as a gas. In
the second theoretical picture, the less dense phase is an
isotropic liquid and the dense phase is a magnetic liquid.
As H approaches 0, the less dense phase should become
isotropic. Our data give no indication of this happening,
but we cannot say clearly what happens at very small

fields. On the other hand, for p ) p, the system is pre-

dicted to be a magnetic liquid even for H = 0. This
implies that for 7 = 0.07, the isotropic-magnetic Quid

transition point be near p* = 0.03. This in turn would
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FIG. 3. Projections of dipolar fluids in a magnetic field,
H' = 1.0, at r = 0.136 for p = 0.02 and p = 0.04 which
are on the coexistence curves. The field is along the s axis.
The arrows give the direction of the dipole moment and the
length is scaled with particle radius.

require a very large shift in the density at the transition
given that for w = 0.11, the magnetic transition is at a
density close to 0.60 [16,17].

To characterize the system structure we have per-
formed a cluster analysis similar to Weis and Levesque

[20]. Since the antiparallel state is precluded by the ap-
plied field, we define two particles as bonded if their pair
energy is lower than —0,5A. This value is at the mini-

mum of the pair energy distribution between peaks due
to nearest and next nearest neighbors. Visual examina-
tion of run sequences shows that this criterion correctly
determines the chains. We have examined the system
structure in the vicinity of the critical point. In particu-
lar, for H' = 1 we have performed constant volume simu-

lations slightly above (~ = 0.176) and below (w = 0.136)
v; at several densities. We also performed simulations as
a function of increasing field at various p and w.

We find that chains are always present even at very low

densities. The "bond" energy per k~T between neighbors
is about —2A which for r, = 0.155 is 12.88. Thus, it is not
surprising even at low densities that chains are present
particularly for 7 & 7;. At r = 0.136 and p = 0.001,
half of the particles are in chains containing 9 or more
particles. At these temperatures, the Quid structure is
not "simple" due to the formation of chains.

For r ) r, and for p & p„ the dominant state is

the monomer and the distribution of chain size is mono-

tonically decreasing. As p or 0 increases, the longest
chains grow at the expense of shorter chains. For exam-

ple, at 7 = 0.176 and p* = 0.001, 90% of the chains are
monomers and the longest chain in the run is a hexamer.
At p* = p,*, the percentage of monomers is reduced to
15% and the largest chain has 41 particles. At this den-

sity about 1% of the particles are in chains that percolate
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the length of the cell in the field direction. In contrast,
at r = 0.136 long chains dominate the structure near the
coexistence densities (cf. Fig. 3). At p' = 0.02 which
is on the low density coexistence curve, only 2.2% of the
particles are monomers. About 40% of the particles are
contained in chains of 24—27 particles with the largest
chain in the run being 79 particles. In the dense phase,
the picture is similar although now the peak in chain size
is at about 20 particles and the longest chain is 91 par-
ticles. The peak in the chain size corresponds to chain
lengths slightly larger than the cell length. Such system
size dependence is expected once a chain has percolated
the length of the cell, but the picture of chains growing
at the expense of shorter chains should be system size
independent.

The above results and the solvent dependency of fer-
rofluid experiments show that the simple purely repulsive
core does not model ferrofluids. It would of course be in-
teresting if one can obtain a ferrofluid that is a soft sphere
dipolar system, but for present sytems the core potential
must have some attractive component to obtain coexis-
tence at H = 0 and to shift 7, to higher values. Some
attractive interaction occurs due to the van der Waals
interaction. However, this attraction is at least partly
overcome by dispersant molecules necessary to prevent
the ferroQuid particles from agglomerating. The solvent
dependency implies a solvent mediated attractive inter-
action which requires some study.

The effect of the attractive part of the core potential
can now be easily understood. When s' = s, the sys-
tem will condense even without the dipole interaction at
high r (r, = 0.5). At these temperatures chaining does
not occur because the dipole interaction is too weak and
the fluid structure is truly simple. As s' decreases lower
temperatures are required for condensation, making the
dipole interaction relatively stronger. At sufficiently low
e', the dipole interaction dominates, producing a chained
structure. In this regime, the fluid is no longer simple,
but reminiscent of a living polymer. Thus, it is not sur-
prising that the various theoretical predictions are poor
given that they only treat a simple fluid. It is clear that a
simple pair potential like the soft sphere dipole can yield
rather complex structures.

Some clue to the structure of coexisting phases in fer-
rofluids can be obtained from recent experiments on di-
lute ferroemulsions. 'The structure of dilute ferroemul-
sions can be determined by video microscopy (p' = 0.02)
[28,29). Within these emulsions are 0.51 pm oil droplets
containing ferrofluid particles. These droplets are super-
paramagnetic with a dipole moment proportional to the
applied field. The microscopy shows that the dense coex-
isting phase is made of columns with a diameter of sev-

eral o. Thus, the dense coexisting phases are solid, not
liquid. The columns exhibit a 2D liquid ordering. The
formation of columns in the dilute ferroemulsion further
suggests an attractive interaction beyond the dipolar in-
teraction which becomes highly screened between chains.
Our simulations show no column formation or liquid or-
dering of the chains. The chains are flexible implying a
repulsive chain-chain interaction (cf. Fig. 3).
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