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Topological Correlations in Colloidal Aggregation
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Topological properties of cluster-cluster aggregation in two dimensions have been studied. In
the diffusion-limited case these properties indicate that the system, apart from a scale change as
the clusters grow, is in a stationary state and resembles an ideal random cellular network. For the
reaction-limited case the system is nonstationary and is governed by specific physical forces.

PACS numbers: 64.60.Cn, 05.40.+j, 64.75.4+g, 82.70.Dd

Recent interest in colloidal aggregation has largely
been driven by the concepts of fractal geometry. How-
ever, very recently, intercluster correlations have been
found for diffusion-limited cluster-cluster aggregation
(DLCA). These arise from interactions between the
growing clusters, via mutually exclusive depletion zones
within which essentially all monomers have been mopped
up. In sufficiently dense colloidal systems DLCA leads
to a stationary scaling state: both the structure func-
tion S(g,t) and the distribution of intercluster separa-
tion P(z) scale to universal functions. These effects have
been observed for both two- [1] and three-dimensional
[2] systems, but are not evident for the reaction-limited
case (RLCA). The depletion zones for DLCA can be con-
sidered to partition the system into a network of cells.
In such networks, the natural focus is on topological,
rather than metric properties. In this paper we approach
cluster-cluster aggregation in this way, considering vari-
ous topological functions. We follow studies of cell net-
works, such as soap froths [3].

Many cellular networks, of diverse origins, appear in-
distinguishable: specific physical forces are irrelevant.
Statistical equilibrium derives from maximizing the en-
tropy of the structure subject to the relevant constraints
[4]. Here the constraints of topology and normalization
of probability lead to intercell topological correlations.
Adding the requirement of space filling yields Lewis’s law
(5], the equation of state of an ideal random system, re-
lating the average size and shape of cells. Departures
from this law indicate the relevance of specific physical
forces.

Our experimental methods have been described else-
where [6(a)]. In brief, polystyrene latex spheres of ~ 1
pm diameter were spread on the surface of an aqueous
subphase. Area fractions (¢) were rather high, typically
~ 10%. The particles are highly charged and interact via
long-range forces [7]. Adding salt (CaClz) to the sub-
phase induced irreversible aggregation, which proceeded
to gelation over a period of hours. Images grabbed at
various times (measured from initiation of aggregation)
represent quasirandomly selected samples due to some
mobility of the colloidal monolayers [6(a)].

The structures observed for salt concentrations 2
0.5M were consistent with DLCA (Fig. 1), and at lower
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concentrations with RLCA (Fig. 2) [6(a)]. In all cases
there was a crossover from slow to rapid growth kinet-
ics (Fig. 3) [6(b)]; DLCA appears at high concentrations
only after this crossover [6(c)]. It was in this rapid,
DLCA regime that scaling of S(g,t) and P(zx) was ob-
served [1]. We therefore restrict the present considera-
tions to this regime (¢ > 60 min) and the similar rapid
growth phase for RLCA (¢ > 225 min). We present
data for two typical experiments, for 0.23M and 0.73M,
the metric properties of which have been considered else-
where [1].

We consider the Voronoi construction [8] based on the
centers of gravity of all clusters wholly contained within
an image (Figs. 1 and 2); other clusters have indetermi-
nate centers of gravity. The analysis becomes impractical
when clusters spanning the image appear, limiting this
study to t < 105 min (DLCA) and < 315 min (RLCA).
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FIG. 1. Binarized video image (730 x 486 um?®) of the col-
loidal monolayer on the 0.73M subphase at 75 min (1005 clus-
ters), and the corresponding Voronoi diagram (see text).
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FIG. 2. As in Fig. 1, but for 0.23M at 285 min (1339 clus-
ters). The Voronoi diagram is noticeably less homogeneous in
this case.

The Voronoi diagrams comprise close-packed arrays of
irregular polygons (cells), each delimiting the neighbor-
hood of a given point.

P(n), the distribution of the number of edges of the
cells (coordination number), is not very informative in
itself, so we discuss its moments and other character-
istics (Fig. 3). For an infinite array of points in a
plane, Euler’s theorem gives (n) = 6; for N points
(n) < 6 —12/N [8]. We thus compare the observed
(n) with this upper limit, (n)max. As aggregation pro-
ceeds (n)/(N)max falls somewhat, but remains consistent
with unity. DLCA and RLCA are not readily distinguish-
able. However, P(6) and the second central moment, p;
(= X,.(n — (n))?P(n)), differ for the two cases. [Higher
moments of P(n) are less well defined.] For RLCA these
statistics evolve with time, P(6) falling as pu; rises. Both
indicate an increasing degree of inhomogeneity in RLCA,
visible in the micrographs as small clusters persist into
late stages of aggregation [1]. In contrast, for DLCA
(t > 60 min) both P(6) and uy appear to remain con-
stant within errors as aggregation proceeds. Thus, as
well as the metric properties mentioned above, P(n) is
stationary for a colloidal monolayer undergoing DLCA.

We now turn to various topological correlations. The
number of sides of adjoining cells are correlated: many-
sided cells have few-sided neighbors and vice versa. A
widely obeyed semiempirical formula, the Aboav-Weaire
law [4,9], states that the mean number of sides of cells
adjoining an n-sided cell is

m(n) =6 —a+ (6a + p2)/n, (1)

Time (minutes)

FIG. 3. The variation with time of various quantities for
aggregation on a 0.23M CaCl; subphase (x) and for 0.73M
(o). (a) Number of clusters in micrograph; note the crossover
from slow to rapid growth. (b) Average number of sides of
a cell, compared to the maximum value of (n) for N points
in a plane. (c) Fraction of cells having six sides. (d) Second
central moment of P(n).

where the parameter a is generally ~ 1. The Aboav-
Weaire law comprises three statements: (i) m(n) is linear
in 1/n, (ii) @ ~ 1, so that the gradient is about 7, (iii)
m(6) = (n)+p2/6. The last is a special case of a rigorous
sum rule due to Weaire [10]: (nm(n)) = (n)2 + u,. For
finite networks (n) # 6 and the law becomes [11]

m(n) = (n) - a+ [(nm(n)) — (n)? + (n)a]/n.  (2)

The common practice of plotting nm(n) versus n can
conceal deviations from the law as m(n) does not vary
much with n. It is preferable to plot m(n) versus 1/n.

Finite system effects caused m(n) to depart signifi-
cantly from this law when n > 9. Such many-sided cells
tended to be associated with each other in the periph-
ery of the Voronoi diagram. The computation was thus
restricted to “inner” n-sided cells (defined as those not
extending beyond the video image).

For DLCA the data for the inner cells essentially su-
perimpose and are entirely consistent with linear depen-
dance upon 1/n (Fig. 4), the average slope and inter-
cept being 7.28 £+ 0.21 and 4.907 + 0.037, respectively.
m(6) agrees with (n) + uy/6. With Eq. (2), and us-
ing the average u; and (n) from the appropriate times
(Fig. 3), the slope and intercept yield consistent values
of a: 0.997 £ 0.036 and 0.994 + 0.050. DLCA thus ac-
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FIG. 4. Mean number of sides of cells surrounding an
n-sided cell for DLCA (times as legend). Errors are only
shown for the 60 min data; other errors are larger. The line is
the weighted average of the several best-fit linear variations.

cords well with the Aboav-Weaire law in all its aspects.
Weaire’s rigorous sum rule is obeyed for all n-sided cells.

For RLCA, m(n) at different times do not collapse to a
common variation with 1/n (Fig. 5). While m(n) « 1/n,
and m(6) = (n) + uz/6, a was not constant. Linear
fits to the data evolved with time, reflecting a system-
atic decrease of a. Thus, while the Aboav-Weaire law
seems valid, these data again show that a colloidal system
undergoing RLCA is nonstationary. The inhomogeneity
characteristic of RLCA leads to larger uncertainties on
the various correlations, making it more difficult to as-
certain their agreement with theory.

A further two-cell correlation function [12], M;(n), is
the average number of l-sided cells adjoining an n-sided
one, usually considered scaled by P(l):

Apn = My(n)/P(l) = Mp(1)/P(n) = Ani. (3)

If A;, is linear in n then the Aboav-Weaire law follows
from maximum entropy. Linearity of A;, in [ and n en-
tails the unique relation [13]

Aip =n+1—6—a/us(n—6)(l —6). (4)

The data for inner n-sided cells in the present cases seem
to be consistent with this, within rather large errors. It is
easier to present the data scaled to a universal function of
n. By comparing P,,,, the probability that cells with [ and
n sides are neighbors, with the similar probability for an
ideal, correlation-free arrangement of cells, a topological
short-range order coefficient can be defined [11]

Bin = 6A1/In — 1. (5)

Evidently, for A;, linear in [ and n [Eq. (4)], the scaled
form

Yin = Bin/(1 — 6/1) (I #6) (6)
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FIG. 5. As for Fig. 4, but for RLCA. For clarity, data for
later times are vertically displaced and only half error bars
shown. Linear fits are shown.

must be a universal function of 6/n—1. We take (n) = 6,
in view of the errors on A;,.

Figure 6 shows the v;, for DLCA at 60 min (statistics
worse for later times). The data are consistent with the
expected universal function derived from linearity of A;,,
using a and p2 from Fig. 3. Within the larger errors v,
for RLCA is also consistent with this relation. For both
cases (3, is zero for | or n = 6: as expected, six-sided
cells are uncorrelated with their neighbors.

Lewis’s law [5] relates the average area of cells to the
number of sides: (A(n)) « n. Figure 7 shows that (A(n))
for DLCA for inner cells is linearly proportional to n. We
thus recover Lewis’s law, which is the equation of state
for ideal random cellular networks [4].

We can conclude that, as regards intercluster structure,
in DLCA the system achieves a state which is stationary
with respect to both geometrical [1] and topological prop-
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FIG. 6. Normalized topological short-range order coeffi-
cients for DLCA at 60 min (I as legend). The data are in
accord with the line, representing the unique linear relation,

Yin = —(1 + 6a/p2)(6/n — 1).
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FIG. 7. Average area of m-sided Voronoi polygons for
DLCA (times as legend), showing accord with Lewis’s law.
The point for n = 9, t = 105 min derives from a single cell.

erties, apart from the change of scale inherent in aggre-
gation. The correlations explored here, A;, and Lewis’s
law, are consistent with maximum entropy [4]. In partic-
ular, the applicability of Lewis’s law implies that DLCA
corresponds to statistical equilibrium. Lewis’s law de-
rives from purely mathematical constraints [4]: physical
forces play no role in such a structure.

RLCA differs, neither geometrical nor topological
properties being stationary. (A(n)) appears quadrat-
ically, rather than linearly, related to n. The mean
perimeter of an n-sided cell is more nearly proportional
to n. The implications are not entirely clear, but it re-
sembles the case of metallurgical grains, for which growth
is driven by the energy stored in the grain boundaries [4].

It may be that similar arguments apply for RLCA: cells
grow as clusters grow, energy being required to overcome
the electrostatic repulsion of the incompletely screened
colloidal particles. At all events RLCA is not governed
by the equation of state of an ideal cellular network; the
departures from Lewis’s law demonstrate that the cellu-
lar structure is determined by particular, probably local,
physical interactions.
This work has been supported by the SERC.

(1] D.J. Robinson and J.C. Earnshaw, Phys. Rev. Lett. 71,
715 (1993).
[2] M. Carpineti and M. Giglio, Phys. Rev. Lett. 68, 3327
(1992).
[3] C.S. Smith, Sci. Am. 190, 58 (1954); D. Weaire and N.
Rivier, Contemp. Phys. 25, 59 (1984).
[4] N. Rivier, Philos. Mag. B 52, 795 (1985); Physica (Am-
sterdam) 23D, 129 (1986).
[5] F.T. Lewis, Anat. Record 38, 341 (1928).
[6] (a) D.J. Robinson and J.C. Earnshaw, Phys. Rev. A 46,
2045 (1992); (b) 46, 2055 (1992); (c) 46, 2065 (1992).
[7] A.J. Hurd, J. Phys. A 18, L1055 (1985).
[8] F.P. Preparata and M.I. Shamos, Computational Geom-
etry (Springer-Verlag, New York, 1985), Chap. 4.
[9] D.A. Aboav, Metallography 3, 383 (1970); D. Weaire,
ibid. 7, 157 (1974).
[10) C.J. Lambert and D. Weaire, Philos. Mag. B 47, 445
(1983).
[11] G. Le Caér and R. Delannay, J. Phys. A 26, 3931 (1993).
[12] M.A. Peshkin, K.J. Strandburg, and N. Rivier, Phys.
Rev. Lett. 67, 1803 (1991).
[13] R. Delannay, G. Le Caér, and M. Khatun, J. Phys. A 25,
6193 (1992).

3685



