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Internal Transport Barrier on q =3 Surface and Poloidal Plasma Spin Up
in JT-60U High-P~ Discharges
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Spontaneous formation of an internal transport barrier was observed associated with improved
confinement in the high-P~ discharges in the JT-60U tokamak. The radial location of the transport bar-
rier was found to be on the q =3 surface. A fast magnetohydrodynamic event localized at the transport
barrier triggered the subsequent formation of an edge transport barrier that resulted in the further
confinement improvement. In these discharges, a high poloidal plasma rotation velocity that significantly
exceeded the prediction of the present neoclassical theory was also observed at r/a =0.8.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.55.Pi

Tokamak operation in the high-Pz regime is a promis-
ing concept for a steady-state tokamak reactor [1,2].
Here the poloidal beta is defined as Pz =2po(p)/B&,
where (p) is the volume-averaged plasma pressure and Bz
is the averaged poloidal magnetic field on the plasma sur-
face. An energy confinement time, r E, more than 2 times
that for L mode (for example, ITER89-P [3]) is required
in the high-Pp regime to reduce the plasma current for ig-
nition and hence to achieve efFicient steady-state tokamak
operation [4]. Improved confinement time was observed
in the high-Pz regime (Pz =1-2) in JT-60U where
the confinement improvement factor, r ~/r ~, in-ITER89-P

creased with aP& [5]. In this regime, the "high-Pz mode, "
a bootstrap-current fraction of up to 58% and a central
ion temperature, T;(0), of 38 keV were achieved simul-

taneously. Recently the high-Pz mode regime was extent-
ed to a lower q regime (q«-4. 3; q, a is the effective sur-

face safety factor defined in Ref. [6]) by using current
profile control to avoid sawteeth. And high fusion perfor-
mance was attained in this regime [7,8]. This Letter de-
scribes two distinctive features of this high-P~ mode: (1)
the formation of an "internal" transport barrier near the

q =3 rational surface and (2) the appearance of high po-
loidal plasma rotation velocity of -50 km/s in the plas-

ma interior.
ln JT-60U, high-Pz experiments were performed with a

lower single-null configuration, in which the ion VB drift
is directed toward the X point. Major plasma conditions
were plasma major radius, Rz, of 3.05 m, plasma minor
radius, az, of 0.7 m (the aspect ratio, e =Rz/ap was

—1—

4.4), the ellipticity, ic, of 1.7, and the plasma volume, Vp,

of 48 m . The plasma current lz, the toroidal field at the
plasma center, B„and q,g were varied in ranges of
0.9-2.2 MA, 3.0-4.4 T, and 4.3-10.0, respectively.
Near-perpendicular deuterium neutral beams (NB) up to
22 MW and tangential NB up to 8 MW with a beam en-

ergy of 90-95 keV were injected into the low target den-

sity ( ~ 1 x 10' m ) Ohmic discharges. To obtain a
low recycling condition for the graphite walls, boroniza-
tion [9], and overnight helium glow discharges were car-

ried out. Profiles of ion temperature, T;, and impurity
plasma rotation velocities in toroidal and poloidal direc-
tions, Vt and V~, were measured using charge exchange
recombination spectroscopy (CXRS) at the CVI transi-
tion (5290.5 A) every 50 ms. In this Letter, negative V,

and negative V~ correspond to the counterrotation to the

plasma current and the poloidal rotation in the ion-

diamagnetic direction, respectively.
The evolution of a typical high-Pz discharge is shown

in Fig. 1. During the initial phase of N B heating
(r =5.05-5.55 s), confinement improvement was rather
modest (r F =1.4X r P " ) while both the n, and T;
profiles peaked [n, (0)/(n, ) to 3.7 and T;(0)/(T;) to 5].
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FIG. I. Evolution of high-P~ H mode. (a) tE, global energy

confinement time; 8'd;„stored energy. (b) T;, ion temperature

at r/a =0.55 and r/a I; T„electron temperature at r/a
=0.52. Numbers 1-4 show time slices referred to in Fig. 2.
(c) n„line-average electron density measured along r/a 0
(tang. CO2) and r/a =0.6 (vertical FIR); n, (0)/n, (0.6a), densi-

ty peaking factor. (d) D, '", deuterium-a emission from the

divertor region.
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FIG. 2. (a) T;, ion temperature profile. Numbers 1-4 are
time slices shown in Fig. 1(b). The inset shows the traces of
ECE signals. (b) The square root of the chord-integrated soft
x-ray radiation profile. The dotted line shows the fitted n, (r) to
the fiux coordinate deduced from interferometers. (c) Vt,
toroidal rotation velocity. The internal transport barrier loca-
tion is shown with the shaded region.

Here r g is defined as Wd; J(P, dWd; —Jdt ) and P, and

Wd;, are the total absorbed power and the plasma stored
energy, respectively. At t 5.05 s, rp suddenly started
rising to 2.5.APE"s~ ~. This was associated with the spon-
taneous increase in T;(0.55a) from 7 to 18 keV while the
edge ion temperature T;(a) remained low (a is the
volume-averaged minor radius). In this phase, identified
as phase I and shown by the shaded region in Fig. I, the
density profile further peaked possibly due to the density
buildup inside the q 3 surface. Phase I was terminated
by a magnetohydrodynamic (MHD) crash localized near
the q 3 surface at t 5.81 s. The edge ion temperature
T;(a) jumped to 5 keV just after the MHD event and
the density profile was gradually broadened. This phe-
nomenon is similar to the sawtooth-induced H-mode tran-
sition in a tokamak although no clear D, drop was seen in
the D, '" trace in Fig. l. It is a remarkable contrast to the
continuous increase in the edge ion temperature without
transition in the hot ion H mode in JT-60U [10]. This
plane, identified as phase II, is dubbed the "high-Pz H
mode" [7]. The rg up to 3 6rP " . was achieved in

phase II but the confinement was degraded by the ap-
pearance of the edge localized mode (ELM).

Figure 2(a) shows the evolution of the ion temperature
profile. During the transition to phase I, a steep T; gra-
dient appeared at r/a =0.6. It moved to r/a =0.7 within
50 ms and stayed there for —150 ms, much longer than
the temperature relaxation time rd —I.SLr/g; of 12 ms;

Zcff = Qes' n, VT, +gn;VT;

where Q,tr —=(P& —dWd;, /dt)/(4z R~O 7a) The .Q,a . is

equivalent to the heat flux density across the r/a =0.7
surface, which includes both convective and conductive
components, since 95% of both P, and the plasma energy
are contained with r/a =0.7 in phase I (85% in phase II).
The effective thermal diffusivity Z,*s(0.7a) was reduced
from 8 to 1 m /s at the transition to phase I. The de-
crease in g,*p was mainly due to the change in VT; since
the change in VT, was small. The steep VT; was always
accompanied by the strong sheared toroidal plasma rota-
tion [Fig. 2(c)].

The location of the observed internal transport barrier
was investigated for various discharge conditions. Figure
4 shows the q,p dependence of the radial position of the

FIG. 3. (a) Time evolution of ion temperature. Shaded re-

gions show the formation of internal and edge transport bar-
riers. (b) Evolution of the effective thermal diffusivity g,s.

here Lr was defined as T;/(dT;/dr ) and was less than 0. 1

m at the steep gradient region during phase I; g; is ion

thermal diffusivity. Thus, a transport barrier with a re-
duced local thermal diffusivity was formed at r/a =0.7.
The electron pressure profile, P, (r) =n, T, (r), inferred
from the square root of the soft x-ray intensity (SX), also
showed a steep gradient at r/a=0. 7 [Fig. 2(b)l. This
gradient came from a steep Vn, formed at r/a =0.7 since
the change in the T, profile was small as indicated in Fig.
l(b). The fitted n, (r) to the flux coordinate deduced
from a tangential CO2 and two vertical far infrared
(FIR) interferometers is also shown in the same figure for
comparison (the dotted line). The duration of phase I de-

pends critically on the occurrence of the fast MHD event
and has been extended stably to 500 ms in diff'erent

discharges.
The "effective" single fluid thermal diffusivity, g,*p, has

been evaluated at r/a =0.7, where steep VT; was formed
in phase I (Fig. 3). Here the g,*s is defined as
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FIG. 4. The q,z dependence of the radial position of the
internal transport barrier. The shaded regions indicate the cal-
culated radial positions of q 2, 3, and 4 surfaces with q0
scanned over a range of 1.5-2.5. The vertical error bar is from
the spatial resolution of the measurement.
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internal transport barrier for both T; and VI. The data
set contains the discharges that resulted in the transition
to the high-Pz H mode or the loss of confinement after
the fast MHD crash. Observed radial positions of the
internal transport barrier were r/a =0.7~0.05 at q, n.

=4-5 and continuously shifted inward with increasing

q,s. This clear q,a dependence motivated us to investi-

gate the radial location of internal transport barrier in

connection with rational surfaces. The radial positions of
q =2, 3, and 4 surfaces were calculated assuming the fol-
lowing current distribution:

j(r/a) =
z

[I —(r/a) i " '
xa qp

(2)
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The bands in this figure indicate the range of results for
the central safety factor, qp, scanned over a range of
2 0.5, which is consistent with the full MHD equilibri-
um fit and the absence of sawteeth. Almost all the data
fell on the calculated location of the q =3 surface. Thus,
the q =3 surface is the most likely explanation for the ra-
dial location of the internal transport barrier. Some data
at q,a-10, however, deviate from the calculated location
of the q =3 surface, which are left for a future study.

The following observation more convincingly supports
the formation of the transport barrier near the q =3 sur-

face. At the transition from phase I to phase II (indicat-
ed by "MHD event" in Fig. 1), a sudden release of ener-

gy across the internal transport barrier within 20 ps was

detected with electron-cyclotron emission (ECE) mea-
surement [Fig. 5(a) and the inset in Fig. 2(a)]. The fluc-

tuation level of this crash was larger on the bad-curvature
side [Fig. 5(b)]. This suggests that the pressure-driven
MHD mode became unstable due to the pressure increase
just inside the internal transport barrier and that this in-

stability triggered the observed event. Magnetic fluctua-
tions with a poloidal mode number m =3 were observed
simultaneously as shown in Fig. 5(c). (The toroidal
mode number was not identified due to the short duration

FIG. 5. (a) MHD event detected in ECE signals; (b) profile
of fluctuation level; (c) MHD event detected in magnetic probe
signals (numbers show poloidal angles of magnetic probes).

of the rapid crash. ) This means that the inversion radius
of the crash, i.e., the location of the internal transport
barrier, was characterized by a resonant rational surface
with m =3. Toroidal mode numbers of n ~ 2 would cor-
respond to q~ 1.5 at r/a-0. 7 which is unlikely and

q =3 with n = I at r/a-0. 7 is consistent with the results
in Fig. 4.

The poloidal and toroidal plasma rotation in these
discharges showed unique features. A large toroidal rota-
tion shear or jump was observed across the q =3 surface
as if momentum transfer across the internal transport
barrier was significantly reduced in phase I as is shown in

Fig. 2(c). The most striking feature was in the poloidal

rotation velocity measurement at r/a =0.8 and r/a = I, as

shown in Fig. 6. The impurity poloidal plasma rotation

V„at r/a =0.8 increased with time and reached —50
km/s in phase II. The value exceeded the neoclassical

prediction [11] of —2.8 km/s by a factor of 18 and po-

loidal Mach number of impurity ions [=(8&/8~)(V~/
Vih); Vih is the thermal velocity of carbon ions] reached
—1. Since the radial position r/a=0. 8 was —17Jepz
(pp is the poloidal gyroradius of carbon ions) from the

plasma surface, the poloidal torque due to ion orbit loss

[12] should be negligibly smail. Furthermore, the direc-

tion of Vz was opposite to the prediction based on the ion

orbit loss and may suggest the loss of electrons. The im-

proved theory [12] suggests a significant reduction of the

parallel viscosity for a large poloidal Mach number. The
improved theory for the impurity is needed to compare
with this observation.

The radial electric field E, is estimated from the

lowest-order force-balance equation for the impurity,

E, = V, Bp
—VpBt+ ~PI,1 (3)

nlZie

where nI, ZI, e, PI, 8, , and 8~ are the impurity density,
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FICs. 6. (a) Ve, poloidal rotation velocity at r/a 0.8 and

r/a I; (b) radial electric field at r/a 0.8 and r/a I calculat-
ed from —V &B term in Eq. (3).

the ionic charge of the impurity, the electric charge, the
impurity ion pressure, and the toroidal and poloidal mag-
netic fields, respectively. We estimated only the —VxB
term in Eq. (3) (=E,""a) because the contribution of the
VPt term was sufficiently small ()VPt/ntZteI ( 10 kV/m)
compared with the —VxB term ((VxB~ —100 kV/m) at
r/a =0.8 and because we have no detailed measurement
of VPt at r/a —1.

Figure 6(b) shows a large positive E, " at r/a 0.8
due to the larger positive contribution from V&B~ com-
pared with the negative V, B~ term (at r/a 0.8-1, 8,
was larger than 8~ by a factor of 6-7). The E x 8 veloci-

ty shear, d(E,/8)//dr, built up in phase II sinceE„"(0.8a), increased from 40 to 170 kV/m while
E„""(a) remained unchanged. An inclusion of the possi-
ble substantial contribution of the VPt term due to the
edge transport barrier gives a more negative E, at r/a- I

and results in a larger E x 8 velocity shear. However, the
role of this Ex B velocity shear in the confinement im-

provement remains an unresolved question.
In summary, we observed spontaneous formation of an

internal transport barrier near the q=3 surface in JT-
60U high-P~ discharges. The confinement improvement
propagated outward and stagnated at the q 3 rational
surface, suggesting a special role for the rational surface
on the transport process in a tokamak. It has been recog-
nized that special flux surfaces can play an important role
in the improved confinement such as the outermost closed
flux surface in the H mode [13] and the q

= I surface in

the pellet-induced improved confinement regime [14].
Since Mercier stability properties change across the q =1
surface, the q =1 surface has been thought to be different
from other rational surfaces in a tokamak. Our observa-
tion indicates that the transport barrier could be formed
in any rational surface. We reported also the appearance
of a poloidal plasma rotation velocity that greatly exceed-

ed the present-day neoclassical prediction at —17x Jepp
from the plasma surface. The poloidal plasma rotation in

a tokamak has been believed to be strongly damped due

to a large neoclassical parallel viscous force except at the

very edge [12]. Previous measurements [15,16], con-

sistent with the theoretical prediction, showed very small

poloidal plasma rotation except at the edge. The experi-
mental observations of the bootstrap current also indicat-

ed the existence of this parallel viscous force [17]. How-

ever, our observation clearly showed that at least the im-

purity can rotate very rapidly (or spin up) in the poloidal

direction indicating the reduced parallel viscous force in

the plasma interior.
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