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Quantum Chaos in the Born-Oppenheimer Approximation
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We show that exponential instabilities and quantum chaos occur in a system with a mixed
classical-quantum description. This type of chaos is of general importance and may occur in any
quantum system which divides in a natural way into a fast (quantum) and a slow (classical) sub-

system.

PACS numbers: 05.45.+b

Current research in quantum chaos is mainly focused
on the classical-quantum correspondence in the semi-

classical regime of classically chaotic dynamical systems
[1—3]. But yet another main avenue of quantum chaos
research may derive from the observation that for some
quantum systems of theoretical and practical importance
the system divides in a natural way into two interacting
subsystems, one of which is treated quantum mechan-

ically, whereas the other is treated in the classical ap-
proximation. The mixed quantum-classical description
of a dynamical system is justified whenever the quan-
tum effects of one subsystem are negligible compared to
the other or when the quantization of the whole system
poses a severe challenge and the classical treatment of
one part has to serve as a necessary guide in the fur-

ther investigation. In fact, there are many examples in

the physics literature where such a mixed description
was already successfully applied. We mention the case
of a two-level system interacting with the electromag-
netic field of a laser cavity [4,5], the micromaser [6], nu-

clear collective motion [7], and the exciton transfer in a
nonlinear molecular dimer perturbed by an intermolecu-

lar vibration [8]. It was demonstrated recently [9] that
the number of photons in the electromagnetic maser field

can be changed essentially in units of 1 from one photon
(quantum limit) to a large number of photons (classical
limit). Thus, the importance of quantum corrections in

the "classical" subsystem (the cavity field) can be con-

trolled to an astonishing degree. The molecular physics

example of the nonlinear dimers is instructive because it
provides an example for the justification of the division

into a quantum and a classical subsystem. Describing
the strong intramolecular interactions in the molecules

constituting the dimer in the framework of the nonlinear

discrete self-trapping equation (see, e.g. , [10,11])one can
use the weakness of the intermolecular forces between

the molecules (and correspondingly small frequencies) to
use a classical approximation for the intermolecular vi-

brations perturbing the transfer dynamics. In this case
the density matrix dynamics for the exciton transfer of
the quantum subsystem is characterized by a homoclinic

structure on the Bloch sphere from which by perturba-
tion with the classical oscillator a stochastic layer and
chaos develops [8]. A further example is provided by a
quantum system with a classical boundary moving in
an anharmonic potential [12]. All the models discussed
above are characterized by a mixed quantum-classical de-
scription. One of the main purposes of this Letter is
to show that such systems can display quantum chaos
and arise quite naturally within the framework of the
Born-Oppenheimer approximation [13,14], which is ba-
sic to condensed matter and molecular physics problems

[14]. This point is illustrated below by analyzing a simple
model which contains all the essential ingredients of the
Born-Oppenheimer approximation and exhibits chaotic
dynamics.

The Born-Oppenheimer approximation provides a
widely accepted procedure for dividing a complex quan-
tum system into a fast and a slow subsystem. In case
the first step in the Born-Oppenheimer quantization pro-
cedure, the quantization of the fast subsystem ("elec-
trons" ), results in well separated energy levels, the second

step, consisting in the quantization of the slow subsystem
("nuclei" ), can easily be performed resulting in the famil-

iar structure of electronic-vibrational spectra (see, e.g. ,

[14,15]). This procedure is somewhat more complicated,
however, if the "electron" levels are not well separated.
One of the simplest situations of this kind occurs for two

close lying electronic levels coupled by a quasicontinuum
of vibrational states for which a classical approximation
is justified.

In this Letter we present the results of a systematic
study of a model corresponding to such a situation. We

study the origin of dynamical chaos in a system with

a mixed quantum-classical description which has direct
relevance for the adiabatic approximation in the sense of
a distinction between fast (quantum) and slow (classical)
variables of a given system. In order to be specific and for

the sake of clarity we shall use the language of quantum

states in a molecular system.
We consider a one-dimensional molecule and sepa-

rate it into an electron moving in the effective potential
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formed by the nuclei and possible other electrons form-

ing some skeleton. The effective potential is taken in
a crude approximation as a one-dimensional box (one-
dimensional metal) in which the only spatial coordinate
is the width of the box q (the size of the molecule). The
system is treated in the adiabatic approximation: the
quantum. kinetic energy of the electron K = K(q) is
considered as a part of the molecular potential energy.
Its minima determine the stable configurations of the
molecule. The other part of the molecular potential en-
ergy is the direct interaction between the constituents of
the skeleton. This part is taken as a classical potential
energy V which in our case depends on the molecular
size only, V = V(q). The molecular coordinate q is con-
sidered as a classical dynamic variable. We will consider
the complete dynamics of the coupled system consisting
of the two quantum states and the classical oscillator.

According to our model assumptions the electronic
part of the Hamiltonian H, is of the form

H, = T + V(z, q)

where T, is the operator of the kinetic energy and V(x, q)
is the box potential. We take V(x, q) = 0 for 0 (~ z [(
q/2 and V(x, q) = oo for [ x ]) q/2 The .electronic wave
function is expanded in the set of eigenstates of H, for a
given q, i.e.,

K(Ai A2 q) = (&& I A&
I +e2[A21 )/q . (5)

The sum of K(Aq, Az, q) and V(q) (the potential of the
skeleton which is independent of the electronic variables
Aq and Aq) is the adiabatic potential for the molecular
coordinate q. In the classical approximation the molecu-
lar vibrations are described by the Hamiltonian function

H„=P /2M + K(Aq, Az, q) + V(q), (6)

i = ~ay/q —2p»Pz/Mq

y = ~a*/q', z = 2p»P*/Mq (7)

where ceo = (ez —eq)/h. Equations (7) are complemented
by the equations of motion for q. Expressing K(Aq, A2, q)
with the help of the Bloch variable z one finds

where P = Mq is the momentum, M is the mass of the
vibrating subsystem, and V(q) is the skeleton potential.
In the molecular physics language, V(q) describes the
motion of a symmetric stretch. It is convenient to rep-
resent the quantum evolution by Bloch variables which
eliminate the arbitrary global phase in A~ and As. Then,
the evolution of the electronic subsystem is represented
by a trajectory on the Bloch sphere. The density matrix
is defined by p „=A A„'.Introducing the Bloch vari-

p12 + ps', y = i[p21 p12], z = p22 pll
obtains from (3) and (4)

g+(x, t) = ) A„+(t)Pf(x, q) (2) K(z, q) = (e+ + zc )/q

where P+(x, q) = (2/q)~~z cos[s (2n —1)z/q] and
p„(z,q) = (2/q)~~z sin[2nnx/q], n = 1,2, . . . are the
eigenstates of even and odd parity of (1), respectively.
A change of the variable q, i.e. , a finite q, will result in
a coupling between different modes of the expansion (2)
(only states of the same symmetry will be coupled). In
order to obtain the simplest possible model of a mixed
quantum-classical system, we will restrict our discussion
to the case where the coupling occurs between two modes
only. To be specific we consider the coupling between the
ground and the first excited state of even parity repre-
sented by the coefficients A+& and A2+ in (2) (in the fol-
lowing we will suppress the superscripts). Inserting (2)
into the time dependent Schrodinger equation and taking
account of the finite q terms we find

where ey = (ez + eq)/2. Computing the force —bK/bq
exerted by the quantum subsystem on the classical sub-
system q of the molecule one has to take account of the
q dependence of z in addition to the 1/qz dependence in
(8). With bz/bq = z/q = Mz/P and using the third
of equations (7) one finds bz/bq = 2y, »x/q. Hence the
equations of motion for the classical subsystem are

q = P/M
P = bV/bq + 2[a~ + ~ —(z —p»x)]/q (9)

Equations (7) and (9) constitute the full set of coupled
equations for the two interacting subsystems. The inte-
grals of motion for the system are the radius of the Bloch
sphere

iA„=) D„I,AA,

k

r=x+y+z= 1
(3)

and the energy

(10)

where the Hermitian 2x2 matrix D„kis given by

( eg/hq' —ip»q jq &

Here, e„=[hz'(2n —1)] /2m, n = 1,2, p» ——3/4. Note
the q dependence in (4) which is crucial for what follows.
Expressing the kinetic energy K = (@ ] H, [ f) in terms
of the coeEcients A~ and A~ we get

E = P /2M + V(q) + K(z, q)

This leaves three independent dynamical variables. The
system (7) and (9) has the fixed points 2: = 0, y = 0,
z = +1, q = qy, where qy are the solutions of the last
of the equations (9) for 2: = 0, P = 0, and z = +1,
respectively. It is easy to verify that these fixed points
are stable elliptic if the combined potential V(q)+K(z, q)
has a single minimum as a function of q. In these fixed
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FIG. 1. x = 0 Poincare sections for two different skeleton
potentials of the model molecule. (a) The harmonic potential
(12); (b) the truncated harmonic potential (13).

FIG. 2. Quantum chaos on the Bloch sphere of the model
molecule. Shown is the phase flow on the northern [(a), z & 0]
and southern [(b), z ( 0] hemispheres.

points the electron is in one of its stationary states n = l.

or n = 2 in equilibrium with the size of the molecule q
or q+, respectively.

First we analyze the dynamics for the case of a har-
monic skeleton potential

V(q) = Vp(q —Q)' (12)

In this case the explicit values for q and q+ are given by
the solutions of the equation q —Q = e„/Vpqs. One finds

q+ & q & Q; i.e. , the resistance of the quantum particle
against localization increases the equilibrium molecular
size as compared to the skeleton value Q. Furthermore,

q+ & q; i.e. , the molecular size is larger in the excited
state. In Figs. 1 and 2 we present Poincare sections of
the dynamics of the vibronic and electronic subsystems,
respectively. Defining the dimensionless quantities il =
q/Q, p = PQ/fi, 7. = vr~ht/2mQ2, n = m/M, and
vp = MVpQ /5 (the total energy E is measured in units
of e = xzhz/2mQz), Fig. 1(a) shows the rl-p projection
of an x = 0 surface of section of a trajectory for n = 0.1,
vp = 10, and E = 4 started at 8 = 0.957r, x = sin(8),
y = 0, z = cos(8), and q = 1.42. The resulting rl-p

Poincare section clearly shows chaotic features. This im-

pression is corroborated by Fig. 2 which illustrates the
quantum Bow on the Bloch sphere. Figure 2 shows the
successive sections of 40 trajectories in (x, y, z, q, p) space

( )
Vp(q —Q)z, for q & Q
0, for q (Q (13)

for n = 0.1, vo ——10, and E = 6 started at the 40 difer-
ent initial conditions x~ = sin(8~), y~ = 0, z~ = cos(8~),
rl~ = 2.4, 8~ = j~/40, j = 1, 2, . . . , 40. This time the
Poincare section is defined by p = 0, dp/dt & 0 and the
projections of the resulting section points in the x-y plane

(the equatorial plane of the Bloch sphere) are shown. Be-
cause of the topology of the Bloch sphere, every point
in the x-y plane actually corresponds to two points on

the Bloch sphere. To eliminate this problem, Fig. 2(a)
shows the projection of the "northern" hemisphere of the
Bloch sphere corresponding to section points with z & 0,
whereas Fig. 2(b) shows the "southern" hemisphere cor-

responding to z & 0. While the southern hemisphere ap-
pears completely chaotic, the northern hemisphere shows

elliptic islands. The "spilling of chaos" from the north-

ern to the southern hemisphere of the Bloch sphere indi-

cates stochastic energy exchange between the two quan-

tum modes.
The origin of chaos is the nonlinear resistance of

the quantum particle against localization inside the box
which apart from the term q depends on the Bloch
variables according to the last term in (9). It is instruc-

tive to isolate the effect of this term. Therefore, we have

also analyzed the potential
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FIG. 3. Euclidean distance d(r ) of two initially close tra
jectories on the Bloch sphere.

In this case the skeleton would be unstable against con-
traction and the finite molecule size is exclusively due to
the nonlinear quantum resistance against localization. A
Poincare section for this potential is shown in Fig. 1(b).
We chose the same initial conditions as in Fig. 1(a). The
resulting chaos in Fig. 1(b) confirms that the main ori-
gin of chaos is the quantum pressure" resulting from the
confinement of the quantum system in the dynamic box
potential. Therefore, the occurrence of quantum chaos
in this system is a direct consequence of Heisenberg's un-
certainty principle.

In order to prove that the quantum dynamics on the
Bloch sphere is genuinely chaotic, we calculated the Eu-
clidean distance d(r) = ([x(r) x'(7)] + [y—(v) y'(r)] +-
[z(r) —z'(r)] ) ~ between two initially close trajecto-
ries. For the reference trajectory (x, y, z, ri, p) we chose
the same initial conditions and energy as in Fig. 1(a).
The trajectory (x', y', z', ri', p') was started with x' = x,
y' = y, z' = z, ri' = ri+ 10 7 and p' was computed from
energy conservation (E = 4). The result is shown in Fig.
3. The initial exponential growth of d(~) is clearly visible.
It corresponds to a positive Liapunov exponent for the
quantum subsystem. At 7. = 300 the exponential growth
of d(7.) breaks. This is natural since d cannot be larger
than the diameter of the Bloch sphere which equals 2.

In summary, we showed that the coupling of classical
and quantum degrees of freedom can lead to chaos in
both the quantum and the classical subsystems even in
the simplest model of such systems. Our model system
exhibits a mixed phase space with regular and chaotic re-
gions. In the chaotic region we observe exponential sep-
arution of quantum amplitudes characterized by a posi-
tive Liapunov exponent on the Bloch sphere. Our anal-

ysis is of general importance since systems with a mixed
classical-quantum description are obtained naturally as a
result of the Born-Oppenheimer approximation. When-
ever a mixed (or chaotic) phase space is obtained in the
first Born-Oppenheimer step (quantization of the fast
variables), all the methodology of "traditional" quantum
chaos theory [1—3] is required to successfully complete
the second Born-Oppenheimer step, the quantization of
the intricate phase-space structures. Since many systems
in solid state and molecular physics are analyzed in the
framework of the Born-Oppenheimer approximation, we
expect that this novel type of quantum chaos will soon
find some important applications.
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