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The quantum fermions plus gravity system (QGD) is studied using the loop representation. A
Hamiltonian is constructed that governs the evolution in the physical time given by a (“clock”)
scalar field. The Hamiltonian, defined via a regularization, is finite, background independent, and
diffeomorphism invariant; it acts on intersections and end points of open curves. The dynamics is
thus coded into combinatorics of graphs (“topological Feynman rules”). Exact dynamical states are
exhibited. Surprisingly, the fermion dynamics is the immediate extension of pure gravity dynamics

to open loops.
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Recent results in nonperturbative quantum gravity—
definition of general covariant regularization techniques
[1] and construction of a finite physical-time evolution
Hamiltonian [2]—have been achieved using the loop rep-
resentation [3,4] in the context of pure gravity. An im-
portant question is whether these results and their ge-
ometrical simplicity survive in the presence of matter:
not only because matter fields are constituents of a re-
alistic theory, but also because the presence of matter
drastically simplifies the key problem of defining physi-
cal observables in a general covariant theory [5]. Thus,
an important problem in quantum gravity is to construct
a generally covariant description of the dynamics of mat-
ter at the Planck scale [6]. In this Letter we show the
following: (i) The inclusion of fermions in the loop repre-
sentation can be achieved in a natural way (as one may
have expected) by extending loop space to include open
curves. (ii) The diffeomorphism invariant quantum states
of the fermion-gravity system are classified by graphs
containing open and closed lines. (iii) Physical-time evo-
lution can be implemented as in [2] by further coupling a
(“clock”) scalar field to the system: the resulting Hamil-
tonian is diffeomorphism invariant, finite, and acts in a
purely combinatorial fashion on the graphs—its action
can be defined in terms of a simple set of “topological
Feynman rules.” A diffeomorphism invariant picture of
fermionic matter and gravity at the Planck scale emerges
from here. We describe the simplest dynamical states at
the end of this Letter. In addition, we describe what
we consider a strange and surprising aspect of the loop
representation: (iv) The dynamics of the coupled gravity-
fermion system can be obtained by just extending to open
curves the action of the pure gravity Hamiltonian (de-
fined for closed curves). We have not been able to find
any convincing interpretation of this fact.
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= Cygr + Cwey1, (3)
on the phase space coordinated by the Ashtekar vari-
ables Agap and 0, g, and by the fermionic (Grassmann-
valued) canonically conjugate fields ¢*, m4. Here A, B =
1,2 are spinor indices and a,b = 1, 2,3 are space indices.
See [4,9] for notation and details. The minimally cou-
pled fermion interaction in the Ashtekar formalism is
not equivalent to the minimally coupled fermion inter-
action in the metric variable. Rather, it corresponds to
the Einstein-Cartan-Weyl theory [10]—see [11], and ref-
erences therein.

We begin by introducing “loop” variables. These in-
clude the loop variables T'[e], T%[a](s) of the purely grav-
itational case [3], and the “open loop” variables [12]

X[A’ a] = wA (ai) UaAB YB (af)1 (4)
Y[A, ] := 7 (a;) Uy u® ¥B(ay), (5)

where o is a single open curve « : s — a®(s) (which
we improperly insist on denoting as “loop”), with end
points o; and ay, and Uy[A] is the parallel transport
matrix. These variables form a closed Poisson algebra
among themselves and with the T variables, as can be
directly verified. They are reparametrization invariant
and satisfy the same retracing and spinor identities as
the T7s [4]. The algebra can be expressed in terms of
breaking and rejoining of loops at intersections and of
gluing of loops at end points. As in the pure gravity
case, we can also consider “higher order” variables, as

a
We consider the Einstein-Weyl theory for a massless, Y*[4,0](s)

i i = 1 (0) Up 42(0, 8) 9% 57 (@(s))Uac” (3, 1) ¥p(ag)-
two-component fermion field coupled to gravity. In the : i) Yaa Y B aCc \S) D\Cf
Ashtekar formalism [7,8], this theory is defined by the (6)
3642 0031-9007/94/72(23)/3642(4)$06.00

© 1994 The American Physical Society



VOLUME 72, NUMBER 23

PHYSICAL REVIEW LETTERS

6 JUNE 1994

The quantum theory is defined by a linear representa-
tion of the Poisson algebra of the loop observables [3,13].
This is given by operators acting on wave functionals
¥[4] depending on sets 3 of open and closed curves (mul-
tiloops). The open loops can be seen as the continuum
limit of the Wilson-Kogut-Suskind flux-tube states in lat-
tice QCD [14]. The quantum operators corresponding to
the open loop variables are

X[e]¥[8) = la U g, (7)
Y(a]¥[8] =iy 6%(ci, Be) Tl -c B, ®)
Ye[a](s) T[B) =) 6%(cui, Be) A%[ex, B](s)
X Z \Il[a"l *e*sqﬂ]~ (9)
g==%

Here e labels end points B, of the multiloop 3. The
notation « -, B indicates loops’ composition (gluing at
coincident end points), and o *.*,7(3 indicates a double
grasping [3] between o and (: one through (. and the
other at a(s), where g labels the two possible reroutings.
See [4,11] for other details on notation.

The quantum version of the diffeomorphism constraint
(2) is the generator of the natural action of the diffeomor-
phism group on the space of open and closed loops [3]. Its
general solution is ¥[a] = U[K(a)] where K is a general-
1zed knot class, defined as a diffeomorphism equivalence
class of sets of open and closed lines. The knot states,
which have support on a single class, can be (over) char-
acterized by the following: the number of end points N,
intersections I, and their orders m;...m; (number of
lines emerging from the intersection), the moduli-space
parameters of the intersections ai"!,...,a]", and the
“braiding” Kpr, where M = 3. m;, obtained by eras-
ing the intersection points [2]. They can be denoted as
IN,I,al"...a7""; Kar). The representation is defined by
the assumption that these knot states have finite norm
(15]. The total fermion “charge” N = [ w94 is a diffeo-
morphism invariant conserved quantity. The correspond-
ing quantum operator can be constructed as the space
integral of the limit of Y[a] when a shrinks to a point.
The result is the fermion-number operator, and one can
directly check that N—the number of end points—is its
quantum number. This confirms the natural interpre-
tation of the number of open ends as the number of
fermions in the state.

Let us now extend the theory by (minimally) cou-
pling a further scalar field T'(z), with the aim of using
it for defining a physical internal time, as in [2,5]. This
turns the Hamiltonian constraint into a genuine Hamil-
tonian. By fixing the gauge 3,T(z) = 0, and restricting
to the clock regime 8,T(x,t) > 0, we obtain a genuine
Schrédinger equation ihdp ¥(T) = H ¥(T) that governs
the evolution of the gravity-fermions degrees of freedom
in the constant T'(x) = T hypersurfaces. The Hamilto-
nian turns out to be H = [ d3z +/—C. We refer to [2] for

the details of this construction. The problem is to find
a finite and general covariant definition of the operator
H. To this aim, following [1], we introduce a fictitious
background flat metric and a preferred set of coordinates
in which this metric is Euclidean, and we write

. A,L, 6
H= lim LS\/ ch
L—0 6—0 Z grl
A—07—0

L8
Cwai 1 - (10)

We have partitioned three-dimensional space into cubes
of side L, labeled by the index I. The quantity C,;'}”

is the regularized form of the pure gravity Hamiltonian
constraint Cg,, as defined in [2]. Next, we define the open
loop 7%, where 7 is a regularization parameter, x is a
point in space, and y is a vector in the tangent space
around x, as the (uniformly parametrized) straight line
(in the background metric) that starts at x in the y direc-
tion and is long 7. Using this, we define the regularized
form of the fermion component of the Hamiltonian as

Chti = 7z [ Gt )

O3 1) = ers [d3y0(6—1y) L v [1%,] (wl/m) (12)
ly|

where c-5 = (3/7)(1/$763) and 6(z) is the step function.
Note the role of the regularization parameters: L fixes
the size of the boxes. 7 gives the length of the “small”
loop. The direction of this loop is integrated over (d%y
angular integration). Y® has a special point where the
o is inserted (the “hand”). The position of this point is
also integrated over (d3y radial integration). The point
splitting regularization is implemented by this smearing
of the position of the hand, and its size is determined
by 6. By expanding in 7 and § one verifies that H so
defined provides a genuine regularization of the Hamilto-
nian. We define the quantum Hamiltonian by replacing
Y% in (12) with the corresponding quantum operator (9).
The computation of the action of the resulting operator
on a loop state is again a straightforward exercise, yield-
ing (we temporarily put Cg = 0)

A~ _ . 9L3 =ré _i
H¥o] = L,zlsl,gl—»o Viaré2r ; ('7:: ) ¥lof, (13)

Fri o] = S Wlorx K% sV wrany)s (14)
le g==x

where e labels end points of a and l. are the tangents
of the lines emerging from the eth end point—these lines
can be more than one if the end point is not free, namely,
if o is not injective at the end point.

The operator H is well defined only if it is finite and
independent from the background metric used for the
regularization. We observe that powers of lengths of the
regularization parameters L, §, 7 in the prefactor in (13)
cancel, a necessary condition for a finite limit. This can-
cellation is a nontrivial result that can be traced to the
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fact that H is diffeomorphism invariant, and that we
are regulating “the square root of the square of a dis-
tribution,” which, in a sense, is homogeneous of degree
zero in the divergent factors. To complete the definition
of H we have to fix the order in which the limits are
taken (the choice amounts to a quantum ordering prob-
lem). For consistency with the above definitions we must
have 7 > 8, and, in order to avoid “boundary effects” in
the box, L > §. We introduce a parameter €, and put
L(e) = ke®a, 7(€) = €a, and §(e) = €*a, where a is an
arbitrary length, and & is an arbitrary dimensionless pos-
itive number. We can now take the € — 0 limit, yielding

Vo] =2 Y (%) e, (15)
Qe
where we have introduced the “end-point operator”
Fe¥lo] = lim F7O*O¥(al, (16)
€—

and A = (%3)1/ 2 is a free constant that emerges from
the regularization. Since § goes to zero faster than T,
we can just take the § — O limit first, and the 7 — 0
limit second. Let us consider the § — 0 limit of F7*¥[a]
(with finite 7). If the end point is free, the action of the
operator is simply to add a small straight line of length
T = €a to the end point of the loop, in the direction of
the incoming loop. If the end point is not free, the action
of the operator produces one term for each component of
o emerging from the end point. These terms imply the
addition of the line and also a rerouting through the in-
tersection, the pattern of which is given by (14). Before
taking the limit 7 — 0, let us assume that ¥[o] is a
diffeomorphism invariant state. If the end point o is
free, we simply have lim,_o F7°¥[a] = 2¥[a], because
for small enough 7 the added loop will not intersect any
other loop, and the addition of a small line at the end of
a loop does not change the knot class of the loop. If a.
is not a free end point, then a * *'ya 1, does belong to a
different knot class than a. But in any case, since ¥[a]
is diffeomorphism invariant, for small enough 7 we have
that f’O\I’[a] becomes independent from 7. The limit
is thus the limit of a constant function and therefore is
finite. Moreover, it is clear that the resulting action of
F. is well defined on the diffeomorphism invariant states.
Thus, the operator H is finite and diffeomorphism invari-
ant in the limit. If we now reinstate Cg, # 0, we have

B RASTE

where i labels the intersections and M was constructed
in [2]. H is a finite operator defined on knot states. We
expect that the square root could be computed order by
order as the complexity of the knots increases. This has

(17)

been verified only in the simplest cases and work is in
progress in this direction.

We are now in the position to describe the general
structure of quantum gravitational dynamics, the quan-
tum theory of gravitationally interacting fermions evolv-
ing in the clock time defined by a scalar field. A phys-
ical quantum state |K) of the theory is specified by a
generalized knot (a graph with open ends). The quan-
tum dynamics is given by the matrix H in knot space,
given in Eq. (17). The matrix elements of the opera-
tors M; and F, can be directly computed between any
two given knot states—from (14) and (16), and Ref. [2].
The calculation amounts to an exercise in the combina-
torics of breaking and rejoining of loops at intersections.
This action can be coded in a small number of simple
graphic rules (“topological Feynman rules”), which we
will publish elsewhere. These matrix elements determine
the first order transition amplitudes in a time-dependent
perturbation expansion in the clock time. In principle,
exponentiation of the H action gives the full evolution.

For instance, we can start from the simplest state
formed by a single non-self-intersecting open line. This
can be denoted as |2,0;15), or, graphically, as | e—e ).
There are two fermions in this state. We have immedi-
ately H |2,0;15) = 2)|2,0; 12): this is a stationary state.
Equivalently, the tlme—dependent Schrédinger quantum
state,

= expi’\ \/g T

(we have reinstated conventional units), is a solution of
the ezact quantum interacting theory. It is suggestive to
think of this state as a simple fermion-gravity quantum
configuration, with only two fermions gravitating around
each other in the simplest of the quantum geometries,
or a kind of “atomic” “ground state” (minimal energy
in the clock time) of a simple two-fermion state. Other
eigenstates are given by a set of n disconnected open

lines |2n,0;12,). The corresponding energy eigenstates
are E, = n\y/c®h/G. As soon as we consider intersect-

ing states, the complexity of the operators M; and F,
becomes relevant, and we have nontrivial time evolution.

Finally, let us come to the relation between the full
theory and pure gravity. A detailed investigation shows
that the action of the Hamiltonian on end points (fermion
term) can be seen as the extension of its action on inter-
sections (gravity term). Rather than describing these
similarities, we present a simpler formal account of the
result, which disregards regularization issues. We recall
from [3] that the action of the pure gravity Hamilto-
nian constraint on loop states is given by the (divergent)
shift operator. This is easily seen from the action of the
connection representation [16] scalar constraint [smeared

| with a test density f(z)] on a loop state:

12,0;12; T) 12,0;12) (18)

O (1) Wald] = [ df(a)Tx (Fbé%g%) bt = [t [ ds f(a(e) £ (@) o(0) 6°(9) gy Yold (19)
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The operator in the last line shifts the loop along its own tangent (as well as along the tangent of any intersecting
line, if any). Now, consider this same shift action on an open loop state, where the end points are given by fermion
fields, and repeat the above calculation backward,

[ [ st(atssiats)awyacis) w( (@)D, ,,%B(af))

= [ @ar[ (Fug s ) + 26 Patale) o | Wald), (20)

the last term being necessary to shift the fermions sited |
at the end points. The operator on the last line can be [3] C. Rovelli and L. Smolin, Phys. Rev. Lett. 61, 1155

written as (1988); Nucl. Phys. B133, 80 (1990).
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/ f *6Aq 6A4 6A, 8¢ ¥ @) (1991); Phys. Rev. D 42, 2638 (1990); 43, 442 (1991);

44, 1339 (1991); Nucl. Phys. B405, 797 (1993).
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tion, extending the dynamics (the shift operator) to open (8] T. Jacobson and L. Smolin, Phys. Lett. B 196, 39 (1987);

loops (where the end points are interpreted as spinors), Class. Quant. Grav. 5, 583 (1988); J. Samuel, Pramana-

and taking the classical limit, one could have discovered J. Phys. 28, L429 (1987); T. Jacobson, Class. Quant.

the Dirac equation. Grav. 5, L143 (1988); A. Ashtekar, J. Romano, and R.
The formalism we have constructed holds only within Tate, Phys. Rev. D 40, 2572 (1989); H.A. Morales-Técotl

and G. Esposito, Trieste Report No. SISSA-165/93/A
(unpublished); H. J. Matschull and H. Nicolai, DESY
Report No. 93-073, gr-qc/9306018 (unpublished).

the “clock regime” [2] in which the coordinate time
derivative of T'(z,t) is positive. The effective Hamilto-
muan H becomes imaginary When. the system ex1ts. this [9] A. Ashtekar, Lectures on Non-Perturbative Canonical
regime. If the formalism is consistent the (real eigen- Gravi o .
. . : . ravity (World Scientific, Singapore, 1991).
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