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Extended Loops: A New' Arena for Nonperturbative Quantum Gravity
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We propose a new representation for gauge theories and quantum gravity. Alternatively, it can
be viewed as a new framework for doing computations in the loop representation. It is based on the
use of a novel mathematical structure that extends the group of loops into a Lie group. It puts in
a precise framework some of the regularization problems of the loop representation, Making use of
it we are able to find a new solution to the Wheeler-De&itt equation that reinforces the conjecture
that the Jones polynomial is a quantum state of nonperturbative quantum gravity.
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The introduction of the loop representation has opened
a new avenue for the nonperturbative canonical quanti-
zation of general relativity, In particular it allows one
to immediately code the invariance under spatial diffeo-
morphisms of wave functions in the requirement of knot
invariance [1]. Also for the first time a large class of so-
lutions to the Wheeler-DeWitt equation has been found
in terms of nonintersecting knot invariants. It is not
clear, however, how to make these solutions correspond
to nondegenerate metrics [2] (a possible solution is the
idea of "weaves"; see [3]). Another alternative is to con-
sider knot invariants of intersecting loops and solve the
Wheeler-DeWitt equation in loop space [4]. Solutions of
this kind have actually been found [5] and they led to the
conjecture that the Jones polynomial may be a state of
quantum gravity [6].

The definition of many of these states is complicated
by regularization ambiguities. Since loops are one dimen-

sional objects living in a three dimensional manifold, they
naturally lead to the appearance of distributional expres-
sions. In particular the few knot invariants for which we

have analytic expressions require the introduction of reg-
ularizations (framings) in the case of intersecting knots.
Some invariants even require a regularization for smooth
loops [7,8].

This difficulty not only arises for the gravitational case.
In non-Abelian gauge theories [9,10] it is known that the
quantum states in the loop representation are ill defined.
A similar behavior arises [11] even in the simple case of
Maxwell theory if one studies the theory in terms of a
real connection [12]. Notice that this problem appears in
addition to the problems of regularization of operators
and constraints. In the case of quantum gravity these
latter issues are complicated by the requirement of dif-
feomorphism invariance (for discussion of these issues in
the loop framework, see [13,14]).

Loops (sometimes called "hoops" [15], for holonomic

loops) are classes of closed curves that give the same
holonomy for any gauge connection. They form a group

under composition, called the group of loops [16]. This
group is not a Lie group, since the composition of loops is

only defined for an integer number of loops. Recently, a
completion of this group into a Lie group was introduced
[17]. The group of loops is included in this Lie group and
can be thought of as a discrete subgroup. The elements
of the Lie groups are called "extended loops" and are the
mathematical basis of the new representation we propose.

Let us discuss for a moment these ideas in the more fa-

miliar context of Maxwell theory. The point of departure
to construct a usual loop representation is to consider the
Wilson looP functional, W~(P) = exP $ dyaAo(y), where

p is a 1oop.
Since Wilson loops form an (over)complete basis of

gauge invariant functions one can express the wave func-
tions @[A] in terms of Wilson loops and go to a represen-
tation purely in terms of loops via the loop transform,

The wave functions @(p) are in the loop representation
and in this representation one can realize the gauge in-

variant operators of physical interest of the theory, for
instance the Hamiltonian, as was discussed in Ref. [11].
As in other representations, the Hamiltonian needs to be
regularized. If one computes the vacuum, one gets

where D b(x y) is the spatial r—estriction of the Feynman
propagator. This quantity is also ill defined due to the
divergence of the propagator when x = y. So we have a
representation where both operators and u)ave functions
are ill defined [if one introduces a regularized propaga-
tor, the expression (2) is the vacuum of the regularized
theory which, however, may not correspond to the Pock
representation].

Let us now consider the quantities W~ [X]
exp J'd3yX (y)A (y). If X (y) is a divergence-free vec-
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tor density the Wg[X]'s are gauge invariant. The X's
are the Abelian analogs of the extended loops we will

consider later on. If one uses WA[X] instead of the Wil-

son loop functional in the transform (1), one ends with a
representation in which wave functions are functionals of
transverse vector densities. It is easy to check that this
just corresponds to the electric field representation of the
canonically quantized Maxwell field. The Hamiltonian is
well known and still needs to be regularized. The vacuum
of the theory is simply given by

@0(X)= exp
~

d y d zX (y)X (z)D i,(y —z)
~ i

and is well defined (if one restricts to smooth X's) with-

out the need of a regularization.
We therefore see that by extending the idea of loop we

have several advantages: on the one hand we end up with

a usual representation in terms of fields (it is just the elec-

tric field representation); on the other hand because we

are using fields instead of distributional objects (loops)
the regularization difficulties associated with the wave

functions of the loop representation disappear. One can
introduce a particular inner product by the functional in-

tegration over the X's [11] and the usual Fock structure
and the interpretation of the excited states in terms of
photons can be recovered completely. It should be em-

phasized that this does not imply that the use of extended
loops bounds us to end in the Fock representation.

The intention of this Letter is to outline a generaliza-
tion of this procedure to the non-Abelian case, concen-
trating on the case of gravity.

Let us start by proposing an extension of the notion of
holonomy for a non-Abelian field similar to the one we

introduced for Maxwell theory. To this aim we rewrite
the usual expression for the holonomy as

U~(p) = P exp
~

A, dy'
~

= 1+) dpi dx„A„(zi) A,„(s„)X"'"'"*"(p), (4)

where p is a loop and the "multitangents" X

X+i &i ' "+vs &ra (~) dyiira

'Y

are defined by

f dy.:"1'" dyl'~(* y) " ~-(» —yi)
0 0

The advantage of rewriting the holonomy in this way
is that we have captured all the loop dependent informa-

tion in the multitangents, which are multitensor densities
on the spatial manifold. The holonomy therefore can
be written in a very economical fashion as the contrac-
tion U~(p) = A„Xi' where t-he indices P are a shorthand
for ai zi a„x„and we assume a "generalized Einstein

g Xiii &1 "'iii &i " +ex &ra '[P(z ~ ) P(~

the trace of the resulting "extended holonomy" U~ [X] is

(formally) gauge invariant under gauge transformations
connected with the identity. We will call it the extended
Wilson functional W~[X] = Tr(U~[X]). An important
difFerence is that the use of extended loops allows one
to consider quantities that are not invariant under gauge
transformations not connected with the identity. There-
fore the variables X are able to capture more information
than usual loop variables, in particular, information of
topological nature.

As we mentioned before, loops form a group. The
quantities X can also be endowed with a group struc-
ture, and the presence of the extra elements (the ones
not associated with loops) allow one to extend the group
of loops into a Lie group called the "extended group of
loops" [17). The usual group of loops is a subgroup natu-
rally associated with the multitangents X(p). The group
product between multitensors is (Xi x Xz)iii *i "

M+1 &1 "+k &k ~+k+1 &k+1 '" +n &n I ~,and si naturally re-
produces loop composition X(pi o pz) = X(7i) x X(pz).

The extended Wilson functionals satisfy a series of

convention" in which we sum from one to three for each
repeated index a; and we integrate over the three mani-

fold for each repeated z;. A repeated index with a tilde
also involves a summation from n = 0 to infinity.

The key observation is to notice that if one substitutes
in (4) a multitensor density X"*' "' "*" (not necessarily
associated with a loop) such that

% +1 +1 '"+z-1 Xz-1 Cz+1 Xz+1 '''Cn Xva (6)—xj+$ ) X

identities associated with the fact that the gauge theory
is associated with a particular gauge group [in the case
of gravity SU(2)], which can be explicitly written. In the
case of ordinary loops these are the well known Mandel-

stam identities. Some observations should be made about
the resulting space of wave functionals. First of all, they
are functionals of the "infinite tower" of multitensors of
all orders. Moreover they are linear functionals (since
the extended Wilson loop is linear in the multitensors).
Wave functions must also satisfy Mandelstam identities.

Up to the moment the discussion has been general, in
the sense that it could apply as well to any gauge theory.
We will now particularize to the case of quantum gravity
written in terms of Ashtekar's new variables [18],

c,e[A] = E;~.*,e[A] = o, (7)
'R4'[A) = ~;~i,E; E'F"&@[A]= O, (8)

where E~ is a triad, A~ is the Hen connection, and F'&
is the curvature. The first set of equations is the din'eo-

morphism constraint which says that the theory is invari-
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ant under diffeomorphisms of the three manifold and the
last equation is the Hamiltonian constraint, which cor-
responds to the Wheeler-DeWitt equation of the usual
canonical formulation.

In order to write these equations in the extended rep-
resentation we choose a polarization in which A is mul-

tiplicative and E a functional derivative. We then con-
sider the action of the elementary operators on extended
holonomies and rewrite them in terms of the X's, ex-
actly as one proceeded with loops [1]. From there one
can obtain the action of any gauge invariant operator in
the extended representation. An important fact is that
due to the linearity of all wave functions in the extended
representation, any gauge invariant operator can only be
a first order difFerential operator. In particular, the form
of the constraints is [19]

C (x)4'[R] = [E,b(x) x R'*]" @[R],

'R4[R] = [P,b(x) x R'*b*]" @[R],

where if P, = (p, i y,„) with p, = a,x, , then
Rill'''Pn — [Xgl'''Pn + ( I)'+XV''''Pl] (Rb2 )Pl'''Pn

2

Q& o
R"'+' ""b"*"' """,and E~b is an element of the

loop algebra such that the field tensor is given in terms of
the connection as F~b = P"&A„. An explicit -form for P b

can be easily written and the only nonvanishing compo-
nents are of the first and second rank. (R *b*)"'"""=
Q& o(—1)" "R,'*"' "" *"" ""+' and the inversion in
the order of the last set of indices in this definition has a
role totally analogous to the "reroutings" at the intersec-
tions of loops of the traditional Hamiltonian constraint
in the loop representation. The subindex c stands for
the cyclic combination in upper indices. Because of the
Maldestam identities the wave functions depend only on
the combination R, the "even" part of the coordinates
X. One can particularize the above expressions to the
case when the multitensors are the multitangents to a
loop. The resulting expressions correspond to the usual
constraints of quantum gravity in the loop representation

[4,20].
What about solutions to the constraints'? It should

be pointed out that since loops are a particular case of
multitensors, any solution found in terms of multitensors
can be particularized to loops and would yield a solution
to the usual constraints of quantum gravity in the loop
representation (the particularization could in some cases
yield a singular function, for instance when loop expres-
sions need to be framed, as in the case of regular isotopic
knot invariants [7,8]). It should be emphasized that the
converse is not necessarily true: given a solution in the
loop representation, it may not generalize to a solution in

the extended representation. An immediate example is
the solutions to the Hamiltonian based on smooth nonin-

tersecting loops, which find no immediate analog in the
extended representation.

It is therefore remarkable that there actually exists a
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particular family of solutions in the loop representation
which does generalize to the extended representation.
In the connection representation, the exponential of the
Chem-Simons form built with the Ashtekar connection is
a solution of all the constraints of quantum gravity with
a cosmological constant [21,22]. When transformed into
the loop representation, the resulting wave function is
the Kauffman Bracket knot polynomial, which is a phase
factor times the Jones polynomial. Through a close ex-
amination, it was conjectured that the coefficients of the
Jones polynomial are solutions of the Hamiltonian con-
straint without cosmological constant. Evaluating the
loop transform using perturbative techniques of Chern-
Simons theory [8], explicit expressions for the Kauffman
Bracket (KB) coefficients can be found,

KBA(p) = e (~ [1+a2(p)A+ as(p)A + ], (ll)

where Gl(p) = g~~b„X~*(p)Xb"(p) is the Gauss self-
linking number [g b„= e,b, (x —y)'i~x —y~s is the free
propagator of Chem-Simons theory]. a2(p) and as(p)
are coefficients of an expansion of the Jones polynomial
evaluated in exp(A) that can be explicitly written as lin-

ear functions of the multitangents with coefFicients con-
structed from g~~b&. Through a laborious computation
it was shown that a2(p) satisfied the Hamiltonian con-
straint of quantum gravity [5] and it was later conjectured
[6] that similar results may hold for as(p) and higher co-
efFicients.

Analogous expressions can be written in the extended
representation simply by replacing the multitangents
that appear in the definition of the coefficients with arbi-
trary multitensors. It can be checked that the resulting
expressions are diffeomorphism invariant and no framing
problems arise. Remarkably, they solve the constraint
equations in the extended representation. Moreover, due
to the simplification of the manageability of the con-
straint a new solution can be found. The recently ob-
tained expression [23] for the third coefficient of the Jones
polynomial, as, can also be checked to be a solution of the

Wheeler De Witt equatio-n [24] in the extended represen-
tation. This adds more credibility to the conjecture that
the Jones polynomial could be a state of quantum grav-

ity.
Generically, the multitensors are distributional, as can

be immediately seen from the equation they satisfy (6).
However, their distributional character is under control.
As was shown in Ref. [17] a generic multitensor satisfying

(6) can be written as a linear combination of transverse
multitensors (which one can restrict to be smooth) times
some well defined distributional coefBcients. This has im-

portant consequences. In particular the solutions consid-
ered above are such that the dependence on the distribu-
tional coefBcients drops off and they are only functions of
the smooth part of the multitensors. They are therefore
well defined. This was not the case in the loop represen-
tation, where they needed to be framed to be well de-

fined. This is because in order to recover the usual loop
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representation one needs to choose the transverse part
of the multitensors to be distributional. Once one has
chosen to work with smooth transverse multitensors, no
further restriction is required for these wave functions to
solve the constraints (recall that in terms of loops some-
times other restrictions, like conditions on intersections,
were required for certain wave functions to solve the con-
straints). As a consequence, if one formally particularizes
these states to the case of loops, they solve the constraints
for an arbitrary type of intersection.

The fact that the wave functions are well defined with-
out regularization ambiguities does not directly imply
that the operators in this representation are well defined.
As in any functional representation, the presence of func-
tional derivatives may introduce singularities that need
to be regularized and renormalized. In the extended rep-
resentation, a regularization problem is present in the
Hamiltonian constraint which involves a multitensor with
a repeated spatial dependence [as can be seen from (6),
repeating a spatial dependence involves a singularity].
However, because the singular nature of the multitensors
is under control one can perform a precise point-splitting
regularization and it can be checked in detail if the coeffi-
cients of the extended Jones polynomial presented above
are annihilated by the regularized constraints or not.
This issue is currently being studied.

One can view the role of the rnultitensors in the ex-
tended representation as configuration space variables of
a canonical theory. The conjugate momenta are repre-
sented by functional derivatives. This suggests that there
exists an underlying classical Hamiltonian theory that
under canonical quantization yields directly the extended
loop representation. This was unclear with loops, where
the loop representation could only be introduced through
a noncanonical quantization. For the Mmcwell case this
theory was studied [25] and found to be equivalent to the
usual Maxwell theory.

Two last points are in order. First, it is not clear if
the extended loops considered in this paper are way too
overcomplete to be an adequate description of quantum
gravity. It may be that when a clearer understanding is
gained, a more modest extension of the concept of loops
will be sufficient to address the issues we have discussed
in this paper. In particular, the issue of the convergence
of extended holonomies is yet to be carefully studied.
Apart from this, one of the most attractive ingredients
of the loop representation, the fact that the diffeomor-
phism constraint was easily solvable in terms of knots, is
lost. It may happen that a more careful study of the dif-
feomorphism constraint in terms of extended loops will
ultimately reveal some simple characterization of diffeo-
morphism invariant classes of extended loops, but the
issue requires further study.

Summarizing, the extended representation presents
practical calculational advantages and offers new pos-
sibilities to discuss regularization issues in the theory

and set it in a more controlled computational framework
without losing some of the topological and geometric in-

sights of the loop representation.
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