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Separation of a Mixture of Independent Signals Using Time Delayed Correlations
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The problem of separating n linearly superimposed uncorrelated signals and determining their mixing
coeScients is reduced to an eigenvalue problem which involves the simultaneous diagonalization of two

symmetric matrices whose elements are measurable time delayed correlation functions. The diagonali-
zation matrix can be determined from a cost function whose number of minima is equal the number of
degenerate solutions. Our approach offers the possibility to separate also nonlinear mixtures of signals.

PACS numbers: 87.40.+~, 05.40.+j, 06.50.—x, 85.25.Dq

The problem of source separation appears in many con-
texts. The most simple situation occurs for two speakers.
If the mixture of their voices reaches two microphones,
one wants to separate both sources such that each detec-
tor registers only one voice [1]. Typical examples involv-

ing many sources and many receivers are the separation
of radio or radar signals by an array of antennas [2], the
separation of odors in a mixture by an array of sensors,
the parsing of the environment into diA'erent objects by
our visual system [3], or the separation of biomagnetic
sources by an array of superconducting quantum interfer-
ence devices in magnetoencephalography [4].

In 1986 Jutten and Herault [5] proposed an adaptive
neural network to perform this task. It decorrelates the
incoming signals via an inhibitory interaction between the
output neurons. These authors [5-7] and recently Hop-
field [8] have demonstrated by way of numerical simula-

tions that their method often works. However, the range
of applicability is still open and there are situations where
it fails.

In this Letter we include more information about the
time structure of the sources into the adaptation process
for the inhibitory interactions, i.e., we require that not

only the equal time but also the time delayed correlations
between the different output signals vanish. This leads to
the following results: (i) The problem of separating n

linear superimposed uncorrelated sources and determin-

ing their mixing coefficients is reduced to an eigenvalue
problem which requires the simultaneous diagonalization
of two symmetric matrices. (ii) The learning rule for the
lateral inhibitory interactions between the neurons is

given by the gradient of a cost function whose number of
minima is equal to the number of degenerate solutions.
(iii) For Gaussian sources we find qualitatively the same
equations of motion for the inhibitory interactions as Jut-
ten and Herault but augmented by contributions arising
from the delay terms that are necessary for convergence.

The source separation problem can be stated mathe-
matically as follows. Assuming that the number of
sources and detectors are equal, the input I; (i =1, . . . ,n)
to each receiver is a linear mixture I;(t) =gg-(C~aj(t)
of statistical independent equilibrium signals, i.e.,
(a;(t)aj.(t')) K(((t —t'()bj. Without restriction we as-

But the elements of A'j k'6'j and A;J =
A, ;6;~ are not sim-

ply the eigenvalues of the matrices M and M because

generally C is not an orthogonal matrix. Instead Eq. (1)
leads to the eigenvalue problem

(MM ')C=C(AA ') . (2)

We note that usually MM ' is not symmetric and the di-

agonal elements of C are normalized to unity. Equation
(2) can be solved by standard techniques of numerical

linear algebra.
In order to compare our method to that of Jutten and

Herault [5] and Hopfield [8) we next proceed to solve Eq.
(2) by a neural network whose architecture for n =2 is

shown in Fig. 1. We follow [5-8] and use linear neutrons

such that the output is determined by

sume that the mean value of the signals is zero
(a;(t)&=0. The problem is now to determine the

coeflicients C;J and the source strengths X, =K;(0) from a

measurement of I; (t )
Since the matrix C is generally not symmetric, it is not

sufhcient to measure the symmetric correlation matrix

(I((t)IJ(t)) =MJ. Jutten, Herault, and Guerin [6] pro-

posed to measure nonlinear correlations like (I;(t)I,(t) )

which are nonsymmetric. Instead we suggest to measure

in addition to M~ the time delayed correlation matrix

(I((t)1~(t+ r )) =M~1. This yields n(n+1) equations

M() g C((C (AJ.(, M(1 —g C((C((X(
I I

for the n(n+1) unknowns C;», A, ;, and K; =K; (r ).
If the mixing is linear independent, i.e., detC~O, and

the time delay parameter r has been chosen such that

K;(0)K&(r ) =X(1iJWX(kj =K; (r )K1(0) for all i Aj, the

problem is solvable up to n! trivial permutations.
Equation (1) shows that by construction the matrix C

diagonalizes M and M simultaneously, i.e.,

c -'M(c') -' =A

and

C 'M(C ) '=A
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FIG. l. A neural network which solves the source separation
problem for two linearly mixed sources.

where T is the matrix of inhibitory connections with zero
diagonal elements. We also assume as in [S-8] that the
time variation of the signals is slow, so that Eq. (3) can
be solved as

2 3 4

u(t) =(I+T) '1(t) .

The matrix T is determined by the minima of the cost
function

V[T~) -g&u;(t)u, (t)&'+&u;(t)u, (t+r)&',i' (s)

~ V

~Tw
(6)

which occurs if the output correlations between diff'erent

neurons vanish, i e., &u;(t)uj(t)& &u;(t)uj(t+r)&=0 for

i&j.
By using the explicit form of u according to Eq.

(4) this means that the matrices (I+T) 'M(l+T )
and (I +T) 'M(l +T ) ' are diagonalized by I +T.
Therefore at the minima of V [T~) the interaction matrix

yields Up to a permutation P the elements of the mixing

matrix: I+T PC, where P is a permutation matrix.
The elements T;J can be determined from V by gradient
descent:

FIG. 2. Vector 6eld plot for the two source separation prob-
lem of Gaussian signals: (a) For the Jutten-Herault model [Eq.
(8)]—the two lines correspond to stable and unstable fixed

points; &b) for using delay terms [Eq. (7)]—only two fixed

points exist which are stable.
To compare our result with that of Jutten and Herault,

we consider the case n=2 for Gaussian signals. Then we

obtain from Eq. (6)

T]2CL &I2(t)u2(t)&&ut(t)u2(t)&

+&I2(t)u2(t+ r )&&u ~ (t)u2(t+ r )&,

T)2a: &u~(t)u2(t) & =3&u2(t)u2(t)&&u~(t)u2(t)&,

T2~ a: &u2(t)u~(t) & =3&u~(t)u~(t)&&u(t)u2(t)&.
(8)

T2) a: &1~(t)u~(t)&&u ~(t)u2(t)&

+&I)(t+r)u~(t)&&u~(t)u2(t+r)&

and from Eq. (34) of [6]

If we neglect in Eq. (7) the delay terms, then Eqs. (7)
and (8) yield via u&~(t)u (t2) &g(T~2, T2~) =0 the same
lines of fixed points shown in Fig. 2(a). Only the in-
clusion of the delay terms, i.e., the full Eq. (7), drives the
system to the correct pair of stable fixed points T~2
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FIG. 4. The correlation C=&u~(t)uq(t+2r})t as a function
of the nonlinearity parameter s=s~ =s2 for Eq. (9). Only in the
linear case (s 0) will all time delayed correlations vanish.

FIG. 3. Decorrelation of mixed signals: (a) original speech
signals produced by two independent crying babies, (b) mixed

signals with mixing matrix [(1,0.9),(0.7, 1)], (c) decorrelated
signals using the least squares method [9], and (d) signals
decorrelated using our method with delay parameter r 0.5 ms.

c2] 1
+ a]a2,

a2 8]
(9)

Ct2, T2t =C2t and TI2=1/C2~, T2~ =I/Ctz depicted in

Fig. 2(b).
In Fig. 3 we compare the least squares method [9] with

our approach for experimental speech signals (cries from
diff'erent babies [10]) which have been mixed by a matrix
with off'-diagonal elements C~2 =0.9 and C2t =0.7. It fol-

lows again that the use of time delayed correlation func-

tions improves the source separation process.

Up to now we have only considered situations where

the number of sources is equal to the number of detec-
tors. If the number m of sources is smaller than the num-

ber of sensors n, i.e., m & n, the activity of n —m neurons

will vanish. The simplest case is the situation when one

source is fed to two neurons. After the adaptation pro-

cess the output of one neuron will be proportional to the

source and the other neuron will be silent.
If the number of sources is larger than the number of

neurons, our potential yields always decorrelated outputs,

but the mixing matrix T will not be correct. In order to
decorrelate an unknown number of linearly mixed sources

one must therefore apply our approach with an increasing
number n of output neurons, until n is so large, say n

=n*, that for the first time one neuron will remain silent,

after the adaptation process. The number of sources is

then n* —
1 and one needs n* —

1 neurons to decorrelate
them [11].

Let us finally discuss the situation for nonlinear mix-

ing. An example is

l c)2 0]

~here e~, e2 are nonlinearity parameters. In this case the

neural network will completely decorrelate (ut(t)u2(t))
=(u (tt) u(2t+ )r) =0 but (u~(t)u2(t+2r)) ts still a

function of the nonlinearity parameters, as shown in Fig.
4. Therefore our method enables us to detect nonlineari-

ties in the mixing of the sources. On the other hand, one

could determine the linear and nonlinear mixing coef-
ficients c]2,c2~, e~, e2 from the measurable time delayed
correlation functions (l~(t)Iq(t+ r)) including more and

more diff'erent delays [12]. In this sense our approach,
which involves time delayed correlation functions, could

be generalized to solve the source separation problem for

nonlinearly mixed sources.
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[1 I] Even for a situation where the number of signals m is

larger than the number of detectors n, i.e., m) n but
m ~ n(n+1)/2, one could still determine the mxn mix-

ing matrix CJ and the Nm time delayed correlations of
the sources &a;(t)a;(t+Ir)& (I =0, . . . , N —I) from the
Nn(n + 1)/2 measured correlation functions &I; (t) lt. (t
+Ir)& (I=O, . . . , N —1). One has only to choose the
number N of delays large enough to ensure that the num-

ber of measurable variables Nn(n+ I)/2 becomes larger
than the number of unknowns m(n+N 1). H—owever,
the signals a;(t), i 1, . . . , m, cannot be extracted from

I;(t), i 1, . . . , n, because the m&n mixing matrix CJ.
cannot be inverted.

[12] To determine the mixing coeScients we have to solve the
equations for k 0, 1,2, 3,

&I (t)1 (t+kr)&=K (kr)+cfqK (kr)

+cic2Ki(kr)K2(kr),

&I~(t)12(t+kr)& =c2~K~(kr)+c~2K2(kr)

+c~cqK~(kr)K2(kr),

&12(l)12(t +kr ) & =cjiK i (k r ) +K2(k r )

+ clc2K I (kr )Kp(k r ) .

These are twelve equations for the twelve unknown pa-
rameters c~2, c2~, c~, cp, K~(0), K~(r), K~(2t), K~(3r),
Kz(0), K2(r), K2(2r), and K2(3r). They can be solved

by standard methods or by a nonlinear neural network us-

ing our potential approach.
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