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We show that Haldane's new definition of statistics, when generalized to infinite dimensional
Hilbert spaces, is determined by the high temperature limit of the second virial coefficient. We thus
show that this exclusion statistics parameter g of anyons is nontrivial and is completely determined

by its exchange statistics parameter o,. We also compute g for quasiparticles in the Luttinger model
and show that it is equal to n.

PACS numbers: 05.30.—d, 71.10.+x

There has been much interest in the physics of anyone
in the past few years. Anyons are particles whose many
particle wave functions pick up a phase e' under the
exchange of the positions of any two particles [1]. Arbi-

trary values of n are allowed by the configuration space
topology of many particle systems in one and two spatial
dimensions. In particular n = 0 corresponds to com-

pletely symmetric wave functions (bosons) and n = 1

corresponds to antisymmetric wave functions (fermions).
The parameter n is traditionally called the statistics of
the particle, since for n = 1, the antisymmetry of the
wave function implies the Pauli exclusion principle. This
has nontrivial consequences for the counting of states in
the many particle system and hence on the statistical
mechanics.

The effect of the exchange phase on the exclusion prin-

ciple for arbitrary cr was largely unexplored until recently.
In a seminal paper [2], Haldane has proposed an alter-
nate definition of statistics based on a generalized exclu-
sion principle. His definition is for particles with finite
dimensional Hilbert spaces but can, in principle, lead to
the existence of fractional statistics in arbitrary spatial
dimensions. The parameter governing fractional statis-
tics in this case is defined by g = — +&~, where
N is the number of particles and d~ is the dimension
of the one particle subspace in N-particle Hilbert space.
By definition, therefore, g = 0 corresponds to bosons
and g = 1 to fermions. Haldane applied this definition
to two cases: quasiparticles in fractional quantum Hall
effect (FQHE) systems and spinons in quantum antifer-

romagnets. In both cases he argued that the exclusion
statistics parameter g is equal to the exchange statistics
parameter a. Johnson and Canright [3] have tested this
prediction numerically for FQHE systems and find this
to be true with the modification that for quasiparticles,

g = 2 ——whereas a = ——.1 1
3 3'

In this paper we first generalize Haldane's definition to
the case where the Hilbert space of the particles is infinite
dimensional. Our motivation for doing so is to apply his

concept of the fractional exclusion principle to systems
of particles in the continuum, when there is no natural
sharp cutoff (which is the case when there are no large

gape in the spectrum). We then show that in general
the exclusion statistics parameter g is determined by the
dimensionless second virial coefficient provided the sys-
tem admits a virial expansion of the equation of state in
the high temperature limit. We apply this result to the
case of anyon gas and find that g = 2a —o.z, when the
exchange statistics parameter a is chosen to be in the
range 0 & a & 2. We then analyze the case of anyons in
a magnetic field, confined to the first Landau level. We
obtain g = a for this case. We also apply our result to the
case of quasiparticles in a one component Luttinger liq-
uid. These quasiparticles also have a nontrivial exchange
phase due to the braiding properties of the vertex oper-
ators that create them. Here we also find that g = a;
the spinons are a special case of this when a = 2. Note
that for quasiparticles with exchange statistics —

3 we
have to take e = 2 —3. Thus our definition and calcula-
tion are consistent with the numerical findings [3].

0031-9007/94/72 (23)/3629 (5)$06.00
1994 The American Physical Society

3629



VOLUME 72, NUMBER 23 P H YSICAL R EV I EW LETTERS 6 3U~E 1994

The dimension of the Hilbert space of N identical par-
ticles when g is the statistics parameter is given by [2,3]

function is given by

where d is the dimension of the single particle space. It
is easy to see that g = 0 (1) yields the dimension of the
bosonic (fermionic) Hilbert space. It is now straightfor-
ward to extract the statistics parameter g from Eq. (1);
in the limit where the single particle dimension d —+ oo,
we obtain

1 . d D~(g)——g= hm ¹!—1
2 (taboo N(N —1) d+ (2)

Note that in this limit N is finite and N/d —+ 0. This,
however, is consistent with the density of particles p =
N/V being finite since for the particles in the continuum

d/V ~ oo. A regulated definition of the dimension of the
Hilbert space is given by the corresponding N-particle
partition function since we have D~ = limp OZ~ ——

limp 0 Tr(e ~ "), where P is the inverse temperature
and H~ denotes the N-particle Hamiltonian. Therefore,
for dealing with infinite dimensional Hilbert spaces, we

propose a generalization of Haldane's definition,

Substituting Eq. (5) and Eq. (4) in Eq. (3) and tak-
ing the high temperature limit we find 2

—g =- +2(~)„,
which essentially isolates the contribution of the sublead-
ing order term in Eq. (4). We therefore set C =- 2d'

and immediately obtain g = 0 (1) for bosons (fermions).
Thus factor C occurs because the regulated definition
cuts off the energy at 2P when two particles occupy the
same state; however, for counting purposes we want to
cut off all states at the same energy, irrespective of their
occupation.

We are now in a position to apply the definition of

g as generalized to infinite dimensional Hilbert spaces
by Eq. (3) to N-particle systems with interactions. To
begin with, consider a system of N-interacting bosons
in two space dimensions. We first show the connection
between Eq. (3) and the second virial coefficient in the
equation of state of the system. The virial expansion for
the pressure P of a gas is by definition a high temperature
or low density expansion in terms of the particle number
density p = N/V, where N is the particle number and
V is the volume (area in two space dimensions). In the
thermodynamic limit N ~ oo and V ~ oo when p is
held fixed [5,6]. The virial expansion is then given by

where C is an overall constant of proportionality which
we fix next. The definition of g given by Eq. (3) forms
the basis for the rest of the calculations presented in this
paper.

To test the utility of Eq. (3), we first consider the case
of bosons and fermions in d, space dimensions. For con-
venience we confine all the N particles in an oscillator
potential of the form V(ri, rz, ..., r~) = emu Q, , r, ,

where ~ is the oscillator frequency and r, are single par-
ticle coordinates. The potential here merely acts as a
regulator and the oscillator potential which will be used

throughout this paper is only a convenient choice. The
N-particle partition function is then given by the expan-
sion [4]

PP = p 1 + ) .B!+i(p& )
t=1

(6)

(Note: Conventionally Bq has V/A as an overall factor
instead of Zi when box normalization is used. ) Compar-
ing Eq. (7) and Eq. (3) we immediately obtain g for the
case N =2,

where A = g2!rP/m is the thermal wavelength and the
dimensionless B!s are called virial coeKcients which can
be expressed in terms of the partition functions. For
example, the second virial coefficient Bq is given by

Z~' (/3) =
N! Zi (P) + Zi(2P)

(4)

——g = —2B2.1
2

This is an exact result for N = 2. Now consider X & 3.
The higher virial coeKcients are given by

where the + signs refer to bosons and fermions, respec-
tively. Notice that the second term in Eq. (4) involves

Zi(2P) since the contribution to this term comes when
two particles are in the same energy level. Equation (4)
is an obvious generalization of Eq. (1) with a cutoff on
the single particle energies. The single particle partition

B3 ——4B2 —263, B4 = 9BgBs —16Bq + 364 (9).
In general we have for k & 3

Bi = +i(B~,Bs, , BA;-i)+(—1)" '(& —1)4, (1o)

where I"I, are some functions of B2, B3 - ~ ~ BI, $ whose
explicit form is not needed here and b!, is given by

(Z, /Z,')
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The summation over m, is constrained by g,. im, = k.
Thus the virial expansion of the equation of state exists
if all bk's are finite. In order to proceed with the compu-
tation of g for N & 3, let us assume that for the system
under consideration the virial expansion exists and hence
all Bi,'s are finite. The high temperature expansion for
the factor Z~/Zi in Eq. (3) is in general given by

f(N) ) fz
(&)

( 1)(~-') = N(N 1) (13)
n! ¹!'

where all fz( ) are now related to f& corresponding to(&) (2)

the two particle partition function. Substituting Eq. (12)
and Eq. (13) in Eq. (3) we obtain for g

zi —g = Cfz = —2B2. (14)

We now have, therefore, a relation between g and the
second virial coefficient Bz for a system for which the
virial expansion exists. Notice that in obtaining the re-

sult (14) for g, it is sufficient to demand that order (Pu)z
terms cancel in the sum given in Eq. (11). This is ob-
viously a much weaker condition than demanding that
the virial coefficients be finite. Nevertheless, the whole
analysis makes sense only if the virial expansion is valid.
This then is the main result of the paper: The Haldane
exclusion statistics parameter g is completely determined

by the high temperature limit of the second virial coeg-
cient of a system of interucting particles in the continuum
iohich admits a virial expansion in this limit.

We can now apply this result to some well known sys-
tems. We first consider anyon gas. Here the second virial
coefficient is well known and is given by [7]

2+2 —4o, + 1
B2 ——

4 )

+ = N)+fz '(&~)'+ "
where fz( ) is some function of the interaction strength
and may depend on N. In the above equation we have

only shown the expansion up to next to leading order as

P ~ 0; higher order terms are irrelevent for our purposes.
Using Eq. (12) we immediately see that the leading di-

vergence in bi, as I9 ~ 0 comes from the overall factor

Zi and is given by 1/(P~)z(" i). For bi, to be finite in

the limit P ~ 0, we must demand that all terms in the
sum involving powers of Z, /Zi in Eq. (11) up to order
(jgu)z(" i) i must cancel order by order. This necessar-

ily implies that the coefficient of (Pu)z must be set to
zero. Demanding this we immediately find

where o. = 0 is bosonic and o. = 1 is fermionic. Using

Eq. (14) we therefore have

(16)

which has the correct limit for a = 0, 1. This result
would be true for two anyons. However, it is not conclu-

sively proved that the higher virial coeKcients are finite

in the case of anyon gas. It has been proved that the
third virial coefficient is finite [4,8]. If indeed all virial

coefficients are finite, then the result given in (16) would

be true for anyon gas in general. This is an interesting
result since the exclusion statistics parameter g is not
the same as the exchange statistics a, unlike the systems
considered by Haldane. For a lattice anyon gas Haldane

argued that the particles would be classified as hard-core
bosons (hence fermions) since the coupling of a particle
to Chem-Simons gauge field does not afFect Hilbert space
dimensions. Obviously our result shows that this is not
so in the continuum. It is easy to see why. The two anyon

spectrum, after taking out the center of mass, is given by

E„,i = u(2n + ~l
—n] + 1). When o. is nonzero all the

energy levels are shifted up by o, (l & 0) or 2 —o. (l ) 0)
(equivalently —n), no matter where the cutofF lies.

Next consider anyons confined in a magnetic field.

Once again g is given by Eq. (16) when the partition
function includes the trace over all Landau levels. This
is easy to see since both the oscillator frequency io and

the cyclotron frequency u, act as regulators and at high

temperatures one recovers the anyon gas result. If, how-

ever, we confine the trace to a single Landau level, we

obtain g = a in conformity with the results obtained for

FQHE systems.
We will now consider quasiparticles in the Luttinger

model. The low energy physics of this model maps on
to the massless Thirring model. As is well known [9],
the model is exactly solvable. We will therefore be able
to compute the right-hand side (rhs) of Eq. (3) directly
in this case. The theory can be written completely in

terms of the left (I ) and right (R) currents satisfying the
algebra [J„",J~t] = nb~„b„„where n, m = 1, 2, . . . and

r, s = I,R. We also have the zero modes [P~z, Jz] = ib„.
The Hamiltonian is

r n=1
(17)

Quasiparticles are created by the action of the vertex
operators V~(x) =: e '& & (*):on the ground state. The
P"(x) are the bosonic phase fields given by

. I'e-* -+ * „
& (x) = Wo(x) +

&
o. xJo. + ). l ,.„ J"+ H.c. i (18)

wher«i. ,z = +1. The periodicity properties of the compact zero modes po' constrain the allowed values of q to beL,R

& = NR+ o, zz and R is the radius of the field p. It is a function of the interaction strength. Our conven-M
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tions correspond to B = 1 for the case of noninteracting
fermions. The constraints on q„ imply that quasiparticles
in the left sector must be created along with quasiparti-
cles in the right sector (except for special values of B)
However, because the Hamiltonians of the two sectors are
completely decoupled, it is consistent to analyze the spec-
trum of the two sectors independently. We will therefore
focus on the left sector alone.

We first consider the space of one quasiparticle states
which we define to be the space of the states Ix)

V&(x) IO). These are not a linearly independent set. From

the form of VL(x), it follows that Iz+ I) = e' Ix),
where o. = qL. Therefore, we have the expansion Ix) =

i e'""*In), where k„= z (n+ z). From the form of

Vl (x) IO) it follows that n ) 0. It can be easily shown that
In) form an orthogonal set of eigenstates of the Hamilto-

nian with eigenvalues E„=vpk„. The single particle
partition function is then given by

Zg
e

—Pa/2 —P /2ZB
1 —e-~

2r
p = pvF—I

Next we come to the N-quasiparticle states which
we define to be the span of I{x„))= Q„ i VLt(x„)IO).
From the fact that VII(x)V&~(y) = e'~"VII(y)V&t(x), it
follows that these many quasiparticle states pick up a
phase e' under the exchange of two of the coordi-
nates. We normal order the vertex operators to obtain

li* )) = I)
'

(
*" *"):ll = )"i* ): lo)

Again from the form of the vertex operators it follows

that we have the expansion

where P&({k„)I{x„))are symmetrized N-particle plane
waveswithmomenta{k„), where k„= & (n+ 2 ); n)
0. The states I{k„))can be shown to be eigenstates of
the Hamiltonian with energy 8 ({k„))= vF P„ i k„.
We can show that I{k„))are a linearly independent set
of states. The states with the same energy are, however,
not orthogonal. The N-quasiparticle partition function

N 2is then Z~ = e ~~ ~/~Z~, where Z~ is the N-particle
bosonic partition function. We can now exactly compute

g using the high temperature expansion for Z& and ob-
tain g = e. Thus the exchange and exclusion statistics
parameters are identical for these models. Note that the
exchange statistics in one dimension is somewhat arbi-
trary. We could have changed it by multiplying the ver-

tex operators with suitable cocycle fa,ctors. The exclu-
sion statistics parameter is, however, unambiguous and
unique. When R = ~i, the theory is equivalent to the

low energy physics of the SU(2) symmetric quantum an-

tiferromagnetic chain. We then have the spinon excita-
tions with a = 2. Thus we recover Haldane's result that

g =
2 for this case.

The above example gives a clear insight into the mech-

anism of the phenomenon. What is happening is that the
addition of a quasiparticle causes a phase shift of every

other quasiparticle, resulting in an energy shift of
per particle . When we count the dimension of the sin-

gle particle space with a fixed (smooth) cutoff, there are

o. states missing. The important thing here is that all

the single particle levels shift up by the same amount,
however high the energy. This is why we get g to be well

defined and nontrivial in the cutoff going to infinity limit.

Exactly the same thing happens in the case of the
anyon gas except that the relevent levels do not all shift

by the same amount. The t = 0, —2, —4, . . . levels in

the two anyon spectrum shift up whereas the positive

t = 2, 4, 6, . . . levels shift down by an amount —n. Equiv-

alently, the latter set may be considered as made up of
levels l = 0, 2, 4, 6, . . . with an upward shift given by 2 —e.
This is why g is not equal to a but has a nonlinear de-

pendence on it given by the product of the two energy

shifts, namely, cr(2 —n) as though the full g is the prod-

uct of g's corresponding to two one-component systems.
However, the important fact is that g is completely de-

termined by o.. When we consider anyons in a strong
magnetic field and restrict ourselves to the first Landau

level, then again we have l's of only one sign. This again

results in g = o..
Thus the fundamental character of exclusion statistical

interactions seems to be that they cause scale-invariant

phase shifts and hence scale-invariant energy shifts. How

this is connected to the nonorthogonality of position
eigenstates which is stressed in Ref. [2] is not clear to
us. We also note that these scale-invariant phase shifts,

if they occur in any model, are nonperturbative eEects
and the model cannot be analyzed by perturbation the-

ory [10]. Thus a nontrivial g implies the inapplicability
of standard many-body perturbation theory, as has been

stated in Ref. [2].
Finally, we have related g to the high temperature limit

of a thermodynamic quantity, which, in principle, is much

easier to measure than the exchange phase of quasipar-
ticles in condensed matter systems. It may therefore be
possible to use this connection to devise a realistic ex-
periment to measure the Haldane exclusion statistics of
quasip articles.
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