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Dynamic Scaling in Colloidal Aggregation: Comparison of Experimental Data
with Results of a Stochastic Simulation
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A stochastic simulation method is used to recover the scaling behavior and the complete time
evolution of an experimental system of colloidal aggregation of polystyrene particles under both
diffusion-limited aggregation and reaction-limited aggregation conditions. Several hypotheses about
the underlying kinetics and the scaling properties of the aggregation process are tested by comparing
numerical with experimental results.
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Colloidal aggregation systems of gold [1], polystyrene

[2,3], and silica [4—6] are extensively studied in the lit-
erature. In experimental systems two limiting growth
processes can be observed: (a) difFusion-limited aggrega-
tion (DLA), i.e. , every collision between clusters results in

a reaction, and (b) reaction-limited aggregation (RLA),
i.e. , many collisions between clusters take place before
a reaction occurs. These processes are usually treated
within the scaling approach of the Smoluchowski equa-
tion [7,8]. Nevertheless, this description is often unsatis-

factory since its validity is restricted to the scaling limit
of long times and large clusters whereas in experiments
small clusters and short times are often of interest. Thus,
a description of the complete time evolution of each clus-

ter is desirable.
In this Letter we show that a stochastic simulation

method [9—11] based on a master equation is an ideal tool
for the investigation of the kinetics and dynamic scaling
properties of colloidal aggregation experiments. With the
stochastic simulation method a hypothesis about the ap-

propriate kinetics of the aggregation process can easily
be tested by comparison of numerical results with exper-
imental data.

Our Letter is organized as follows. We begin with a
description of the usual deterministic treatment of ag-

gregation processes within the scaling approach of the
Smoluchowski equation. Furthermore, we briefiy discuss
the corresponding stochastic formulation of the problem.
The results and the interpretation of the experimental

system in the context of the scaling theory are described
in the second part. The stochastic simulation results are
discussed in the last part of this Letter. There we com-

pare the simulation results with the predictions of the
scaling theory and the experimentally observed data.

In general, a colloidal aggregation process can be de-

scribed by the following reaction scheme:

k(i,j)
A, +A, ': A+, ,

where A, denotes a cluster of i unit masses and k(i, j) is

the mass dependent rate coefBcient or kernel of the irre-
versible reaction. The kinetics of the aggregation system

is determined by this kernel. In the usual determinis-
tic approach, this process is described by the well-known

deterministic Smoluchowski equation,

Bc (t) 1 ) k(i, j)c,(t)c, (t)
4+g —m

where c~(t) denotes the concentration of clusters of
mass m at time t. For convenience, the dynamics
of the Smoluchowski equation (2) is often formulated
in dimensionless variables defined by the transforma-
tions X (T) = c (T)/cp, T = t/t ss, and K(i,j )
2k(i, j)/k(1, 1), where cp = p ~

rnc is a constant and

tsss ——2/cpk(1, 1). The Srnoluchowski equation is ana-
lytically solvable only for very few kernels; for example,
if K(i, j) = i +j then the so-called sum kernel solution is

given by X (T) = (1 —u)(rnu) exp( —mu)/m!, where
u = 1 —exp( —T) for monodisperse initial conditions.

The kinetics of the process (1) predicted by the Smolu-
chowski equation (2) can be characterized by the well-

known classification scheme of van Dongen and Ernst
[7,8]. In this theory it is assumed that the cluster-size
distributions approach the form

X (T):s OC (m/s(T))

in the scaling limit m ~ oo, s(T) ~ oo with x = m/s(T)
constant. Here e is a kinetic exponent, s(T) is some mea-

sure for the average cluster size, and C (x) is the scaling
function. The scaling properties of the solutions X~(T)
depend on two exponents A and p, which characterize ho-

mogeneous kernels. These exponents are defined by

k(ai, aj) = a"k(i,j) and k(i, j) i"j" " (i &(j)

Here we consider only kernels with A & 1 describing non-

gelling aggregation kinetics for which 6 = 2 can be de-

rived. The scaling function C (x) is bell shaped for kernels

with tt ( 0 and s(T) = n„=' cp/ P, c,(T) Solutions to.
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kernels with p & 0 show a different kinetic behavior. In
this case O(x) decreases monotonically for increasing x
and s(T) = (n„)iI'(i "& for A ( 1. These properties can
be seen in the experimental system considered here as
shown later.

Before presenting the results of the experimental study
let us discuss the essentials of the stochastic simulation
method. The numerical algorithm is described in detail
elsewhere [11—14]. The master equation according to the
stochastic process (1) describes the evolution of the joint
probability distribution P(N, t):

aP(N, t) 1 .k(i, j)= —) '
[(Ni + 1)(N~ + 1+b;~)P(N+, t) —N, (N~ —b,~)P(N, t)]. (4)

H«e P(N; t) denotes the probability that the system with volume V is at time t in the state N = (Ni, N2, . . .), where

N, is the number of clusters A, . The state N+ is given by

(. . . , N, + 1, . . . , N~ + 1, . . . , N, +q
—1, . . .) if i g j,

(. . . , N, +2, . . . , N2, —1, . . .) if i = j.
The quotient k(i, j)/V is the rate that a cluster of mass
i reacts with a cluster of mass j and the kernel k(i, j) is
taken from the Smoluchowski equation (2). The expec-
tation values of the stochastic process and the concentra-
tions X (t) which can be measured experimentally are
related via

(N (t)) =X (5)

As an initial condition for the numerical algorithm we
assume in the following that at time t = 0 the system
consists of Ni = 2 x 10 monomers whereas the numbers
N, , i = 2, 3, . . ., are taken to be zero. The magnitude of
the fluctuations is estimated by performing 200 realiza-
tions of the stochastic process. The approximate CPU
time on a 486 PC is, in the simulations presented here,
1 h for 100 realizations of the stochastic process. We
checked that our numerical results do not vary when the
initial number of monomers is enlarged.

Let us now describe the experimental system which
was investigated by Broide and Cohen [2,3]. It con-
sists of an aqueous suspension of surfactant-free charged
polystyrene microspheres with a radius of 0.258 pm. Ir-
reversible aggregation was induced by the addition of salt
(MgC12). The experiment was performed under both
DLA and RLA conditions. In the experimental system
only clusters with masses 1 to 20 were measured.

The experiment is interpreted in the context of the
scaling theory describing the evolution of s(T), C (x), and
X„(T). In Figs. 1(a), 2(a), 3(a), and 4(a) some of the
experimental results of the DLA study with parameters
co = 1.6 x 10s/cms and t~~ ——0.60 h and of the RLA
study with co = 1.6 x 10M/cms and toss ——1.4 h are pre-
sented. In Fig. 1(a) the evolution of n„ is shown for the
DLA measurements (solid circles) and the RLA measure-
ments (open circles). It is seen that n„ increases approx-
imately linearly after a certain time for both processes.
If O(x) = s(T) X~(T) is plotted versus x = m/s(T) at
different times T, one observes a data collapse on a sin-
gle master curve. This can be seen in Fig. 2(a) for DLA
data in the time interval 1.7 & T & 89 and in Fig. 3(a)
for RLA data in the time interval 1.2 & T & 39. These
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FIG. 1. (s) The average cluster size n„ss s function of the
dimensionless time T for DLA (~) snd RLA (o) as obtained
I'rom the experimental study [2]. (b) Temporal evolution of
n„ for DLA (~) snd RLA (o) ss obtained from the stochastic
simulation of the kernels KD(i,j ) snd K&(i,j )

results demonstrate that the scaling assumption (3) is a
well suited description of the experimental data, which
is somewhat surprising since the experimental data do
not represent the scaling limes, i.e., long times and large
clusters. The dependence of X„ from T is shown in Fig.
4(a) exemplified for clusters with masses n = 1, n = 5,
and n = 20. These experimentally observed features of
the aggregation systems for DLA and RLA can be used
to determine the kinetics, i.e., the correct kernel k(i, j)
of the reaction system.

From the form of the scaling plot Fig. 2(a) Broide and
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FIG. 2. (a) Scaling function C'(x) = X n„versus the pa-
rameter x = m/n„ taken from the experimental study of DLA
[2] showing alignment of distributions measured at difFerent
times. (b) Dynamic scaling plot Cr(x) versus x = m/n„ for the
stochastic simulation of the kernel Krr(i, j ) describing DLA.

FIG. 3. (a) Scaling function C (x) = X n„versus the pa-
rameter x = m/n„ taken from the experimental study of RLA
[2] showing alignment of distributions measured at difFerent
times. (b) Dynamic scaling plot for the stochastic simulation
of the kernel KR(i, j) describing RLA.

Cohen suggest that the following kernel should describe
DLA: kz(i, j) = kc(i /"~+j /"~)(i / "+j /~"). Here
df is the fractal dimension of the aggregates, dH is the hy-
drodynamic fractal dimension of the clusters, kc is a con-
stant factor, and the subscript "D" stands for DLA. From
the experimental data they deduced dy —dH. Other ex-
periments [1] show that for difFusion-limited aggregation
dy = 1.75, so we finally arrive at the kernel

. g,g 2k')(1, g)
k&(1, 1)

( 1/1.75 + 1/1.75) ( -1/1.75 + —1/1.75)

which should describe the DLA measurements.
On the other hand, a simple assumption for the form

of the kernel describing RLA is k~(i, j) (ij)"/~. The
value of A should be A = 0.5 for the foBowing reason.
A slope v = 1.5 of the scaling function Cr(x) is observed
experimentally, as can be seen from Fig. 3(a), and in the
scaling theory of the Smoluchovrski equation the slope 7

and the value of A are related via r = 1+A for this class
of kernels.

Let us nmv compare the experimental data with the
stochastic simulation results to the DLA and RLA pro-
cesses. We simulate the process with the same monodis-
perse initial condition as in the experimental system. We

show the results of the stochastic simulation for the same
quantities as experimentally observed.

The results of the simulation of DLA governed by
the kernel Kri(i, j) with initially 2 x 10s monomers are
shown in Figs. 1(b), 2(b), and 4(b). In Fig. 1(b) it can
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FIG. 4. (a) Temporal evolution of Xr, Xs, and Xgo for the
experimental system of RLA [3]. The solid lines are the sum

kernel predictions. (b) Temporal evolution of Xq, Xs, rLnd

X20 as obtained by the stochastic simulation of RI A.
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be seen that n„(solid circles) increases linearly in time
T but much slower than the experimentally measured
value of n„[Fig. 1(a)]. Nevertheless, the graph C(x)
obtained by the stochastic simulation [Fig. 2(b)] agrees
perfectly with the one observed experimentally [Fig. 2(a)]
for large values of x. For small values of x, the agree-
ment of the graphs is only qualitative in the sense that
they both show a bell-shaped form. These findings agree
well with those obtained by the difFusion-limited cluster-
cluster aggregation model [15] with difFusion coefficient
D(m) ~ m 'i'

Discrepancies between the results of the stochastic sim-
ulation and those of the experiment may be explained
by gravitational settling of large clusters [16]. Gravita-
tional settling would have two efFects on the kinetics of
the experimental system. The first one is an underes-
timation of the total concentration since large clusters
are not measured. Since n„ is determined in the exper-
iment by the quotient of cp and the total concentration,
this leads to an overestimation of n„This .may explain
the discrepancy of Figs. 1(a) and 1(b). This overestima-
tion of n„also affects the scaling plots C(x) versus x in
Figs. 2(a) and 2(b), and 3(a) and 3(b) since x = m/n„
and C'(x) = X n„. The second effect of gravitational
settling is that the purely Brownian kernel K~(i, j) has
to be modified in such a way that large clusters have a
higher collision rate since they move faster than assumed
in Brownian motion.

However, we have also simulated the kinetics of the
RLA system with the kernel

(t. .
)

dsf R( ) J) 2(t )g/2

for several values of A. The best agreement of the stochas-
tic simulation results with the experimental data is given
for A = 0.8 and not for A = 0.5 as predicted by the scaling
theory of the Smoluchowski equation. In addition we find
that s(T) = n„ leads to a data collapse of C (x) whereas
other exponents such as s(T) = ns as predicted by the
scaling theory do fail to align on a single master curve.
In Fig. 1(b) the temporal evolution of n„(open circles)
is shown. In this model n„ increases approximately lin-
early in the time interval 3 & T & 40 but slightly slower
than experimentally observed [Fig. 1(a)]. The reason for
the slower growth of n„ in the experimental RLA system
could also be an overestimation of n„caused by gravi-
tational settling as discussed above in the DLA experi-
ment. The scaling function C(x) agrees perfectly with
the experimental data as can be seen from Figs. 3(a) and
3(b). This scaling is not the asymptotic one predicted by
the scaling theory of the Smoluchowski equation, since
this would imply a value of ~ = 1.8 for A = 0.8. How-

ever, in the stochastic simulation we observe a value of
~ = 1.5 as it is also measured experimentally. From this
example it is seen that the asymptotic predictions of the
scaling theory are not sufficient to describe the complete
time behavior of experimental systems. We exemplify
the temporal evolution of our RLA model by presenting
the stochastic simulation results of the evolution of Xi,
Xs, and Xzp in Fig. 4(b). This shows a good agreement
with the experimental data plot in Fig. 4(a).

To conclude, we have shown that the stochastic simula-
tion method is an ideal tool to test hypotheses about the
reaction kinetics for an aggregation process observed ex-
perimentally. The method can easily be extended so that
fragmentation processes or three particle interactions can
also be included.

We want to thank Professor J. Honerkamp, Dr. H.
P. Breuer, and Dr. F. Petruccione for stimulating the
interest in this topic. Most thanks go to Professor M.
Broide for fruitful discussions and for the permission to
reproduce Figs. 1(a), 2(a), 3(a), and 4(a) from [2,3].
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