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Electronic Structure of the Abrikosov Vortex Core in Arbitrary Magnetic Fields
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Using a scanning tunneling microscope we imaged Abrikosov vortex lattices in 2H-NbSe2. At a re-

duced temperature of T/T, =0.6 we found a distinct decrease of the vortex-core radius with increasing
magnetic field. Even at Iow fields H/H, 2« I, the effect of vortex-vortex interactions on the spatial varia-
tion of the order parameter h(p), is clearly evident. In order to interpret the experimental results the

microscopic equations of the superconducting state are solved self-consistently. A good quantitative
agreement is obtained without any variational free parameters.

PACS numbers: 74.60.Ec, 61.16.Ch, 74.20.Fg, 74.50.+r

The outstanding analytical potential of scanning tun-

neling microscopy (STM) is due to its unique capability
of providing spectroscopic information with sub-meV sen-

sitivity at a spatial resolution of the order of angstroms.
This enables one in particular to probe superconductive
properties on a length scale smaller than the coherence
length. The present investigations have been performed
on 2H-NbSe2, a layered type-II compound which is rela-
tively inert to surface contamination. The pioneering
work by Hess et al. [I] has demonstrated that this aniso-

tropic model superconductor is particularly well suited for
the STM analysis of vortex electronic fine structures.
They have shown the existence of bound states in the vor-

tex core which are eA'ected by vortex-vortex interactions.
In the present work the influence of mutual interaction
between vortices on the characteristic size of the vortex
core is studied both experimentally and theoretically.

28-NbSe2 exhibits an in-plane coherence length of
g(0) =7.7 nm. Most recent magnetic measurements indi-

cate a London penetration depth of k(0) =200-250 nm

for screening by in-plane currents [2,3]. Hence, a mag-
netic field perpendicular to the atomic 1ayers experiences
a Ginzburg-Landau parameter of tc)) I which classifies
2H-NbSe2 as a fairly hard type-II superconductor.

The microscope is operated in liquid helium which en-

sures a constant environmental reduced temperature of
T/T„=0.6. The surface topography of the sample is ob-

tained in the usual way by operating the STM in the
constant-current mode, typically with I =50 pA and
V=7 mY at negative sample bias. Spectroscopic infor-

mation is simultaneously obtained at any image point by
temporarily switching the STM to an open-loop mode.
Thereby the tunneling current is detected at a certain
subgap voltage, where for the present investigation Vo

. 0465 / ttewas chosen. Instrumental details can be
found in Ref. [4]. While the topography of the samples
usually only reveals atomic corrugation, regular Abriko-
sov vortex lattices become apparent from the spectroscop-
ic data as sho~n in Fig. l. For the aforementioned
subgap tunneling voltage the maximum variation in tun-

neling current, I~a„—In,;„,typically amounts to about l

pA. I,, „refers to the center of a vortex, while I;„is

detected between two nearest neighbors. %'e measured
the field dependence of the vortex-core radius by analyz-
ing STM line scans along the nearest-neighbor rows of
vortices for a given magnitude of the external magnetic
field. The vortex-core radius is arbitrarily defined by that
distance po from the vortex center, for which the tunnel-

ing current has decreased from I „.
„

to 36% of I .,„—I;„.
po values are obtained by averaging over several vortex
rows, each containing a few vortices.

Since the present measurements were based on detect-
ing variations of the tunneling current at a relatively high
reduced temperature rather than on detecting variations
of the difrerential tunneling conductivity at low reduced
temperatures, T/T, « I, we could neither extract particu-
lar quasiparticle ground states bound to the vortex core
nor a sixfold perturbation of the vortex core related to the
crystal lattice [5]. Mixing of states within a few IcT
about the tunneling level results in completely rotational-

ly symmetric vortex cores of roughly Gaussian shape,
The STM results (see Fig. 2), however, clearly show that
the vortex-core radius exhibits a pronounced shrinking
due to an increasing vortex-vortex interaction under the
influence of an increasing external field.

In order to understand the STM results on a firm

theoretical basis, we performed calculations of the local
density of states (DOS) in the Abrikosov vortex lattice at

FIG. I. Typical STM image of the vortex lattice in NbSe2.
The external field is 0.28 T (reprinted from Ref. [4]).
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p. Introducing a new function 0 by the substitution

F =sin0, 6 =cos0, and transforming to cylindrical coor-

dinates one can rewrite Eqs. (I ) in the form

15

8"+ I/p8' —re sin 8 —
Q (p) sin 8cos8+ 5 cos8 =0,

In(T/T, )+2nTQ (6/cp —sin8) =0,
(2a)

(2b)

where the prime denotes differentiation with respect to p,
and the gradient-invariant vector potential Q(p) =Vg
—(2n/@p) A = (0,Q, O) in the limit x » I is [13]

0
0.0 0.5 1.0 1.5 2.0 Q (p) I /O p/p (3)

FIG. 2. Effective vortex radius for NbSe2 as a function of
magnetic field. Curve 1 represents the results of calculations
for 1(p) profile; curve 2 those for h(p) profiles. The circles rep-
resent the STM data from Ref. [4]. The experimentally deter-
mined critical field values are H, 2(0) 3.8 T and H, 2(0.6T, )
=2.04 T.

arbitrary magnetic fields, 0 (H (H, z. In particular, an

influence of the interaction between individual vortices on

order parameter, h(p), and DOS, N(e, p), with increas-

ing magnetic field is of interest. Earlier, the vortex-core
field dependence was discussed in literature only phenom-

enologically in the framework of the Ginzburg-Landau
(GL) equations for the order parameter [6-9]. However,

the GL approach does not give a possibility to calculate
the local DOS for a vortex lattice and therefore to com-

pare the theory with STM measurements.
We restrict ourselves to a discussion of the case of rela-

tively high T/T, and large x values, x»1, corresponding
to the experimental situation. The calculations are done

assuming dirty-limit conditions; i.e., the mean free path I

is small compared to the superconducting coherence
length g, . In the dirty limit the equations of the micro-

scopic theory of superconductivity are reduced to the
Usadel equations [10] for the normal and anomalous
Green's functions, G and F, which are valid for the whole

temperature and magnetic field range:

roF ——G V — A FV G =VG, —(la)D 2Kl

2 4p

ln(T/T, )+2nTQ (b/ru F) =0, —(lb)

where D = VFI/3 is the diffusion coefficient and co

=nT(2n + I ) is the Matsubara frequency.
We assume that the vortices form a regular lattice. In

this case it is convenient to use the Wigner-Seitz method
[11,12] to find the coordinate dependence of the Green's
functions. In this method a hexagonal elementary unit

cell of the vortex lattice is replaced by a circular one
with the radius p, =(@p/nH)'i . The accuracy of this
method was shown in [11,12] to be better than 0.2%. G
and F depend only on the distance from the vortex core,

Equations (2) and (3) should be supplemented with the

boundary conditions at the center and the edge of the unit

cell:

a(0) =8(co,o) =0, h'(p, ) =8'(rp, p, ) =0. (4)

Here A(p) and 8(ro, p) are normalized to nT„the length

to the coherence length g, =(D/2rrT, ) 'i, and the mag-

netic field to @p/2ng, .
In fields near H, z the functions h(p) and 8(rp, p) are

small, which makes it possible to neglect nonlinear terms

in Eqs. (2) and to obtain the solution of the linearized

equations in the following form [14]:

a(p) =Ciip exp( —p'/2p„'), (5a)

ln(T„/T)=Ill[2 +T,g, /Tp„]—y(2 ),
where y(z) is the digamma function. For T((T„,ex-
panding y(z +z)=ln(z) for z))1, and using i'(& )
= —C —2ln2 = —4lny* (where y* =e'=e 5 =1.78 is

the Euler constant), we have from Eq (7).
ep =4ny*g,'H„(0). (8)

For the other limit, T= T„Eq.(7) leads—to the GL rela-
tion

ep=2n( (T)H, z(T), (9)

with g(T) =(n/2)(, (l —T/T, ) 'i . Equation (8) can be
used to determine (, from H, q(0) in order to change
from a reduced length scale in units of (, to a real length
scale in order to compare theory and experimental data.

8(ro, p) =A(p)/(co+ a), a =2/p, =2n H, z/4p. (Sb)

The constant Cp can be found from the solution of the

nonlinear equations (2), and at T = T, is equal to

Cp =lpp(T)(I H/H )/zPg(I —2e '),
where Ilrp(T) is the magnitude of the bulk GL order pa-
rameter, and the parameter Pq =(6 (p))/(6 (p)) is

1.1576 in the Wigner-Seitz approximation [11]. Substi-
tuting Eq. (5b) into the self-consistency equation (2b),
we obtain the temperature dependence of the critical cell
radius p, (T), and the upper critical field H, (Tz), which

coincides with the Maki-de Gennes equation [15]
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Using the explicit dependence of 0 on the frequency co,

Eq. (5b), one can calculate the DOS by analytical con-
tinuation co = —ic. TTo an accuracy of the terms of first
order in 6 (p) we obtain in the limit H =H„2

IV (s,p) =ReG (c,p) =Re [cos0(s,p) ]

, + W'(p) e' —a'
( 2+ 2)2

(l 0)

At arbitrary magnetic fields, 0 & H & H„z, Eqs. (2)-(4)
were solved numerically. The spatial dependencies of the

normalized order parameter A(p)/A(p, ) in the vortex-

core region f'or T/T, =0.6 are shown in Fi . 3 f
H/H val,2 values. The dashed line shows the asymptotic be-

havior, Eq. (5a).
The spatially resolved DOS at various distances p from

the vortex-cell center are shown in Fig. 4 for H/H, 2 =0.2.
It is seen that the DOS in the vortex-core region differs

qualitatively from the standard BCS curves. With in-

creasing the distance from the vortex-cell center a peak in

the DOS appears at a=ho(T), but the DOS remains

gapless. Using these results one can calculate the tunnel-

ing current 1(p) between the superconductor with vor-

tices and the normal conducting STM tip at various volt-

ages and magnetic fields.
The field de dpendencies of resulting tunneling profiles

for eV/ho=0. 64 are shown in Fig. 5. The experimental

data for H H =0 2d ' f,2
= .2 are also shown tn order to demon-

strate explicitly the fit between theory and measurements.
To plot the data in absolute units we have used the ex-
perimental value of H, q(T=O) =3.8 T for 2H-NbSe2.
Equations (8) and (9) yield (,=4.9 nm and ((0)=7.7
nm. The current at the edge of a Wigner-Seitz unit cell,

I;„,used in normalization, is field dependent. For H/

,q=0.2 both theory and measurements give l~;„/I
=-0.59. As is seen from Fig. 5, a good fit is obtained for

the ro
'

p of'. !e curves without any variational f'ree parame-
ter».

e in igs. and 5,Using the theoretical curves presented in Fi s. 3-
one can determine the effective vortex radius. First, one
can define the radius as usual from the half width of
6 p A p, according to the criterion 6( )/d, (,) =

2. Second, the experimentally measured effective ra-
ione criterion in-ius is given according to the aforementio d t

vo ving tunneling current variations. Both vortex radii
are lotted inp d in Fig. 2 as a function of magnetic field. The
radius of an isolated vortex derived from the calculated
I (p) curve at Vo =0.64ho/e and T =0.6T.
p—= 23. nm. The STM data are likewise shown in Fig. 2.

t is seen that (l) the field dependence and the absolute
va ues o the vortex radius calculated from the I( )
curves are in good quantitative agreement with the data;
and (2) the apparent vortex radius measured by STM is

0.8

0.6

!

0.0 .—!
0

F l(ji. 5. Decay of the tunnehng current as a function of sepa-

ration from the voe vortex center for various magnetic fields. Th.
circles represent STM data for H/H =0.2 bo ta~ne y averag-

ing over several vortices.
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essentially larger than that defined from h(p) profiles.
To demonstrate this difference more quantitatively let us

define the radius p„'g according to the same criterion as
for po, namely, A(p„'a)/h(p, ) =0.64. Then it follows from
Eqs. (5a) and ()0) that at H =H—„q,p,'tr=0. 60((T) and
p0=0.82((T) for the h(p) and STM profiles, respective-
ly; i.e., measured 1(p) scans are essentially broader than
A(p) curves.

To our knowledge, the field dependence of the vortex
radius has not been calculated before. The core structure
was only modeled in the GL regime numerically [6,7] and

by variational procedures [8,9]. In the considered high-
temperature case T=0.6T, the h(p) dependence (curve
2 in Fig. 2) given by our microscopic calculations coin-
cides within 2% with that found from the GL equations
[7]. The variational procedure by Clem [8,9] is based
upon a trial order parameter function h(p) =p/(p
+(„)' that does solve the GL equations only approxi-
mately. As a result, at zero field for x))1 the parameter
g„is;tbout IO%%ur) smaller than that given by exact calcula-
tions. At small fields g,(H)/(, (0) =I —aH/H, z with
a = I [9), whereas our theory (curve 2 in Fig. 2) gives the
result a=1.13. It is important to note, however, that the
apparent vortex radius measured by tunneling can only be
calculated within the microscopic theory employed in this
work, because calculations of the density of states in a
vortex core are beyond the framework of the GL ap-
proach. In our calculations, dirty-limit conditions were
assumed. However, in the considered high-temperature
region the assumption of the dirty limit does not influence
the results due to the following reasons: (I) The bound
states in a vortex core which exist in a clean sample
[16-18] are thermally smeared out, and (2) the GL
theory is valid at these temperatures. Thus the effective
length scale of the spatial variation of h(p) and of
/V (a,p) is given by the GL coherence length, g(T), which
is uniquely related to H, & by Eq. (9) independently of the
mean free path value.

In conclusion, we found an excellent agreement be-
tween the vortex effective radius measured by STM and
that calculated from the Usadel equations. In order to
experimentally verify the obtained relation between field
magnitude and core radius for the whole range 0 & H(H, .2 we are presently performing measurements in the
high-held regime. This should yield some information on
the DOS and vortex-radius convergence for H = H, 2. In
spite of having performed rather fundamental investiga-

tions on a particular model superconductor we hope that
the present work will contribute to a better understanding
of technical materials and the behavior of superconduct-
ing devices in general.

We would like to acknowledge clarifying discussions
with M. Yu. Kupriyanov (Moscow State University) and
C. Heiden (University of Giessen). The samples have
kindly been provided by F. Levy (EPFL-Lausanne). The
present work would not have been possible without con-
tinuous support by A. I. Braginski (KFA-Jiilich).

*On leave of absence from Institute of Solid State Physics,
Academy of Sciences, Chernogolovka, Moscow, Russia.

~Also at Institute of Experimental Physics, University of
Saarbriicken, Saarbriicken, Federal Republic of Ger-
many.

[Il H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Walles,
Jr. , and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).

[2] K. Takita and K. Masuda, J. Low Temp. Phys. 5$, 127
(1984).

[3] L. P. Le, B. J. Sternlieb, W. D. Wu, Y. J. Uembura, J.
W. Brill, and H. Drulis, Physica (Amsterdam) 1$5-1$9C,
2715 (1991).

[4] U. Hartmann, T. Drechsler, and C. Heiden, SPIE Conf.
Proc. 1855, 140 (1993).

[5] H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys.
Rev. Lett. 64, 2711 (1990).

[6] A. L. Fetter and P. C. Hohenberg, in Superconductititv,
edited by R. D. Pares (Dekker, New York, 1969), p. 817.

[7] M. Yu. Kupriyanov and K. K. Likharev, JETP Lett. 15,
247 (1972).

[8] J. R. Clem, J. Low Temp. Phys. 1$, 427 (1975).
[9] Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P.

MalozemoA, and F. Holtzberg, Phys. Rev. B 43, 7609
(1991).

[10] K. Usadel, Phys. Rev. Lett. 25, 560 (1970).
[I ll D. Ihle, Phys. Status Solidi (b) 47, 423 (1971).
[12] R. Watts-Tobin, L. Kramer, and W. Pesch, J. Low Temp.

Phys. 17, 71 (1974).
[131 M. Yu. Kupriyanov and K. K. Likharev, Sov. Phys. JETP

41, 755 (1976).
[14] A. A. Golubov and M. Yu. Kupriyanov, J. Low Temp.

Phys. 70, 83 (1988).
[15] D. Saint-James, G. Sarma, and E. J. Thomas, Tvpe II

Superconducti t it@ (Pergamon, Braunschweig, 1969).
[161 U. Klein, Phys. Rev. B 41, 4819 (1990).
[17] F. Gygi and M. Schluter, Phys. Rev. B 43, 7609 (1991).
[18] B. Pottinger and U. Klein, Phys. Rev. Lett. 70, 2806

(1993).

3605




